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Unidirectional drift of bistable front under asymmetrically oscillating zero-mean force
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The unidirectional drift of bistable front8Fs) that separate two stable uniform states of a bistable system
under the action of an asymmetrically oscillating zero-mean f@ideer) is considered within the “pseudo-
linear” (piecewise-linegrmodel of the system. The particular case of sigenmetricalsymmetrically shaped
rate functions is studied. To perform a rigorous analytic treatment for arbitrary strengths of the driving force we
assume that the applied ac force is quasistatically slow. Both cases of the initially static and the initially
propagating BFs are examined; various types of the “unforced” dc motion are found. We show that the
unforced transport of BF takes place in any case of the asymmetric driver, whether Maxwellian construction of
the rate function was balanced or not. In particular, progregsieeelerateddc drift of the initially static BFs
occurred. In contrast, both progressive and regregsigeeleratedtypes of unforced dc drift of the initially
propagating BFs take place. Moreover, reversal of the directed motion of the initially propagating BF occurred,
if the deviation of Maxwellian construction from the strictly balanced situation was relatively small; by tuning
the strength of the driving force the dc drift of BF exhibits the reversal. The symmetry properties of the
biharmonic driver are discussed. The biharmonic ac force consisting of a superposition of the fundamental
mode and its evelodd) superharmonics is an asymmetricalymmetrically oscillating one. The reversal
type of the unforced dc drift occurred only in the case of the even superharmonic “mixing,” when the
superharmonic mode of the biharmonic driver was even.
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I. INTRODUCTION (piecewise-linegr models of the underdamped, moderately

o , damped and extremely overdamped systems being under the

The ratchet effect, a systematic direct motion of the freeyction of the periodic zero-mean force showed that the un-
particles, stimulated by zero-mean forcelsiver), arises in @  forced transport in “front-ratchets” is sensitive to the tempo-
Iarg_e_ cl_ass of nonllnegr dissipative systems out of_ thermaly) symmetry of the driving forcé(t) (e.g., see Ref§4—g)).
equilibrium. Both versions of the stochastisoisy drive) In the present paper the unforced transport of the bistable
and deterministidregular drivey ratchets are possible and o5 (BFg) that separate two stable uniform states of the
have been discussed at length in RéfS. A crucial feature  iqiape dissipativeiextremely overdamp@dsystem of the
of the ratche_t device IS the spatial asymmetry of the_ Sub+eaction-diffusion type is considered. We extend our previous
strate potential. The ordinary ratct{@ownian motor, noisy  g,gy of the deterministic “front-ratchetDFR) presented in
and deterministic onewvorks as a particle separator in a SPa-r7 o] by consideration of the “asymmetrically” driven BFs
tially periodic system that is characterized by asymmetrically nder the action of the asymmetrically oscillating zero-mean

shaped potential; the unidirectional transport takes place iy ce The response of BF to the applied ac force is described
the “active” particles experience the spatial asymmetry of the,

substrate potential. The considered ratchet effect takes placg the following equation,
too even in the case of the externally induced asymmetry; the U, — U,,— c(t)u, + R(u) = f(t), (1)
“unforced” drift generated by “kinematical” asymmetry of
the substrate potential has been recently discussed in Refihere the functioru(z,t) denotes the steplike field of the
[2]. front propagating at the moment velocitt), z=x-ct is the
A topic currently receiving much attention is the unidirec- traveling coordinate, and the rate functiBtu), which char-
tional transport of the solitary self-ordered “statefont-  acterizes the rate of the transient processes in the system, has
structureg in the nonlinear, spatially uniform systems underthree zeros ali=uy,U,,Us (say,u; <u,<usg). In the consid-
the action of the deterministic or noisy zero-mean forcesered case of the bistable system one hasRhat, ;) >0, and
Two different mechanisms underlying the unforced motionR/(u2)<0’ where the prime denotes the derivative. The front
discussed, namely, the parametricdliyternally stimulated  gg|ution of the free(f=0) BF uy(2) joins two fixed points
and _directly (internally) induced transport _of the self- (stable uniform stat¢s; and us, namely; the following re-
localized fronts, bo'gh coherent and d|s_S|pat|ye ones, havRitions hold: uy(z— -) — U, and ug(z— =) — us. Recent
been studied analytically and by numerlca! Slmula.t|ons 0% dies carried out within the cubic polynomial and pseudo-
(s.ee, e.g.,.the Papers [6_8.])' Recent .StUd'eS carried .OUI linear models of the bistable system showed that the charac-
with the sine-Gordon, cubic polynomial and pseudolinearg istic features of the unforced transport of BFs were sensi-
tive to the symmetry properties of both the rate function and
the driving force[7,8]. More specifically, the peculiarities of
*Email address: bakanas@pfi.lt v —f4 characteristics, that describe the dependence of the drift
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(mean velocity v of BF versus the amplitudg, of the driv-  metry properties of the biharmonic driver are discussed in
ing force, depend on the shape of both functidR8)) and  Sec. IV. Section V deals with the unforced transport of the
f(t). The following combinations of the symmetry in the con- asymmetrically driven BFs. Both cases of the initially static
sidered DFR have been identified) {Rg—fs, (I1) {Ra}=fs,  and initially propagating fronts are considered. Finally, we
(1) {Rgt=f4, and (IV) {Ra}—fa, where the labelS andA  summarize the main conclusions.

stand for the symmetrically and nonsymmetrically shaped

functions, respectively. Similarly as in the case of the ordi-

nary ratchets, zero-mean forég(t) is treated as symmetric Il. MODEL AND APPROXIMATIONS
(contrasymmetric if the equality f(t+T/2)=-f4(t) holds,
where byT we denote the period of the ac force. Differently,
zero-mean forcef,(t) is asymmetric if the relationfa(t
+T/2) # —fA(t) holds. Quite similarly, thesymmetricaland
asymmetricalrate functions defined by the relatiofRg}

:= RY(u)+C and {Ry}:= RQ(u)+C satisfy the relation®(u,

The analytic treatment of the ac driven BFs requires the
use of approximate approaches. The perturbative techniques
that are valid in the case of the weak driving force are of
limited use. Some interesting peculiarities of the unforced
transport of BFs may occur at relatively high strengths of the
driving force, as shown in Ref8]. Our principal goal is to

—Au)=-RO 011 — RO
thAU)_ IR;$§UE+A(ju) atnd Tﬁ(u% Au) # Ef\é(:u?+Au), \év.t:ere present the main outlines of the unforced drift generated by
€ quantityau denotes the Iree varna IS an arbitrary ¢ asymmetrically oscillating force of zero mean, in a wide

constant, and the subindex “0" means that Maxwellian Con7nterval of the amplitudes, of the driving force. Similarly as
struction of the rate functioR%(u) was strictly balanced. In b 9 ' y

: ._in [7,8], to describe the dc drift generated by the driving
;‘/r\]/?( (;t'rle_rRVE'O)rd.S’ tht?] sy(rjr_]frpetryt of thteh assouatefdt Potentiat, ces of the arbitrary strengths, we shall use an adiabatic
W:="RU), 1S rather dirierent in either case o Isym- (quasistatit approximation. We assume that the driving
metrical or asymmetricakate function. Namely, the follow-

. . force is slow, if compared to characteristic relaxation time in
ing relations hold: W(u,~Au)=Wg(u,+Au) and Wi(u, e system. A rough criterion of the approximation used was

TA}J)#\/\&(U#AU), where, as previously, the lab&@andA  yresented in[7,8). It readsT;> 7, where the parameter
indicate the symmetry. Clearly, the familgn infinite setof  jngicates the characteristic relaxation time in the system,
the similarly shapedrate functions{R(u)}, either symmetri- =maxR’"X(u;),R"Xuy)}, and the quantityT,=min{T} de-

cal or asymmetrical, is generated, by tuning the free constagtes the period of the rapidly oscillating mode of the ac
C. Both the free front solutions and the propagation veloCi-grce. Clearly, the periodic forc&(t) may be presented as a
ties of BF that are related to the similarly shaped rate f“”C'superposition of the harmonic modes. The adiabatic approxi-
tions {R(u)} depend orC. In particular, the propagation ve- mation is exact in the limif; — . The considered approxi-
locity o increases with the increasir@ Finally we notice  mation was recently applied to consideration of the self-
that both the cubic polynomial and the sine-type rate funcyrgered states (pulled fronts, spiral waves in the
tions, frequel_”ntly used in considgrations of the bistable fromsquasistationary perturbed system of the reaction-diffusion
are symmetrica(contrasymmetrically shapgdOn the other  type[9]. The response of the driven BF to the quasistatic ac
hand, the temporal symmetry of the biharmonic ac forceforce is a rapid, almost instantaneous one, in the time scale

frequently used in theoretical studies of the ordinary ancys the periodT;. Thus we drop the time derivative in EQ).
soliton “ratchets,” is flexible. Using the combinati¢super-  The governing equation reads

position of the odd/even harmonics one gets either sym-
:‘T(uitrically or asymmetrically oscillating zero-mean force U,,+ c()u, - Re[u: f(1)]=0, R==RU)-f(t), (2)
t).

The characteristic features of the directed drift of BFswhere byRr(u) we denote the modified rate function. Simi-
being under the action of the symmetrically oscillating zero-jarly as in[8], the “pseudolinear” model of the bistable sys-
mean force, both versions of DFR, above labeledibynd  tem is used, namely, the rate functi®u) is approximated
(I1), have already been discussed T8]. In the present pa- py the linear pieces. The considered rate function has a spe-
per we shall deal with cadéll); the unforced drift generated cjg| “status:” it is flexible and analytically tractable. All
by the symmetrically shaped rate functiofRs} and the  apove discussed versions of “front ratchets” are analytically

asymmetrically oscillating zero-mean for€gis considered.  tractable with the considered rate function, described by the
We notice that the particular, very special case of the “asymfo|lowing expression(see Fig. I:

metrically” driven BFs, namely, the dc drift of the initially
static BF being under action of the biharmonic ac force con- ar(u-uy), u < uy,
sisting of the superposition of the fundamental mode and its
second harmonic was recently discussed in F&f.

For the sake of brevity, in what follows we shall use the as(u—ug), U > Up,
abbreviation: the bistable front under the action of the sym-
metrically (asymmetrically oscillating zero-mean force will Here the free parameters are defined as follows: uy
be referred to as “symmetricallylasymmetrically driven ~ <Uz<Up<Uz and a;>0, (i=1,2,3. The extremes of the
BE. considered rate functiorl}y,=R(uy) and R,=R(u,,, are

The paper is organized as follows. In Sec. Il we discusgiven by the relatiomRy = a,(U,— Uy ). The front solutions
the model and approximations. Section Il deals with theof the pseudolinear model have been presented in Refs.
speed equation of the quasistationary driven fronts. The syni8,10].

RU) =)= ax(U=U,), Uy <u< Uy, (3
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; Q9 =V1-5, Ky =-s\r;z+s%  (4d)

Here and in the following we use the denotations
=1/6; 3= ay 3/ ap. Without loss of generality, the following
boundary conditions have been used in the derivation of
speed equation(4a): u(z,t)—uv4(t) if z— -, and u(z,t)
—uv3(t) if z—, where the time-dependent quantitiess
=u 3+ 5f(t) denote zeros of the modified rate functiga
Consequently, the free front solutiony(z) satisfies the
boundary conditionsiy(z) — u; if z— —%, anduy(2) — us if
z— . The propagation velocity of the free B& is de-
scribed as followssy>0 if S>0 andsy<0 if S<O0, where
the quantityS denotes the area enclosedRyu dependence
FIG. 1. The pseudolinear rate function and its associated poterin the interval[u,,us] of the variableu. The presented in-

tial, W' (u) := —R(u). equalities show that the penetrated state of the free Rk is
if the Maxwellian construction of the rate function is “posi-
IIl. SPEED EQUATION OF THE ac DRIVEN FRONT tively” unbalanced(S>0), and differently, the penetrated

. ) ] o state isu; if S<0. From Eg.(4a), in conjunction with Egs.

The main subject of the present consideration is thgap)—(4d), it follows thats(t)=g[r;,r3, hg; f*(t)]. Whence, the
propagation velocity of the ac d_nven BF. Regr_etfully, in th_e drift velocity of the driven BFp :=(s(t)), is a function of the
considered case of the pseudolinear rate function the exphcg'Ope parameters ; and the relative height of the rate func-
expressions of the front solutions of BFup—u plane(phase  tjon 1. but not a function of the absolute values of the slope
trajgctones are Iackmg,. different from the cases of the coefficients{a;} and the height®,, andR,, if the velocity of
cubic-polynomial and smg-Gordon modpls. .AS a CONS€the dgriven BF was taken in the scaled units. Here the bracket
guence, the moment velocigyt) of the quasistatically driven (-~ denotes the averaging over the period of the driving
BF is not expressible as the function of the free parameterg,..o |n what follows we shall use the scaled units.
of the rate function and the dri.Ving ford:ét) More SpeCiﬁ- As noted, we shall deal with the Sim”arly Shaped rate
cally, _the” moment velocityc(t) is described by the “speed fynciions defined in above. The Maxwellian construction of
equation” being derived by the direct solution of the govern-ne rate functior(3) is strictly balanced, i.e., the initidfree)
ing equation(2) used in conjunction with the appropriate Bf s static(motionless if one takes thahg=hg:=—R% /RS,
boundary and matching conditions. The required speed equiynhere the quantitieB?, andR?, denote the extreme values of

tion reads(see Ref[8]) the “balanced,” “globally” symmetric rate function, which
Sr(s) he— (1 +he)f satisfies the conditio®=0. The ratio of the extreme values
: =R — (4a)  of the considered rate functioR, andR?, is given by the
exd-¢(s)]sin®(s) 1 +(1+hg)f expressiorny=/(1+8;)/(1+6,). Using the balance factay,

where the quantity(t)=c(t)/cp denotes the moment veloc- defined by the relatiomy:= hg/hy we get thats,=0 if gy
ity, scaled in the units of the “marginal” speed of the =1, i.e, tr_le freg BF is always static if the balance factor
“oushed” front,cp=2\s";2, the functionf”(t) := f(t)/ AR stands equals unity. Using the balance factgy we get thats(t)

for the driving force, scaled in the units of the height of the=S1:73:Gu; f'(]. Thus, the governing parameters that in-
rate function AR=R,,—R,, and the rest parametdry:= fluence on the directed drift of BF are as follows, both the

~Ry /Ry indicates the ratio of the extreme values of the rateP@lance factogy and the slope parameterg; of the rate
function. The unknown functions in E¢4a) are described as function, and the driving forc€ (t), scaled in the units of the

follows: height AR. Clearly, the propagation velocity of the initial
(free) BF, s5(g4,1,r'3), is a function of the balance factgy,
sb(s) arctanTg(s), Tg(s) >0, and the slope parameters,. Consequently, by tuning the
(s)= d(s) = ,
P = Q.(9)’ I - arctafi- Tg(s)], Tg(s) <O, factorgy we arrive at the family of the similarly shaped rate

(4b) functions, if the slope parameters; were kept fixed. The
—FEo/Fu. Tols) = E</F relevant cases of the similarly shaped functi¢8smay be
SS9 =FsfFv. TA(9) = FsiFen typified as follows:

and the auxiliary functions are given by the expressions

=1, or =0, 5
Fsn= Qa(S)[6:1K4(s) — 65K5(9)], O %0 (3
Fen=~1Q3() + Gy(8)Gs(9), (40) gy=1 o $=0. (5b)
Fy=Q(s) + GX(9), Gy3=— S+ 8 K1 49, The _moment. velomty;(F) satisfies some symmetry properties
previously discussed in Rdf8]. In particular, it was shown

where in [8] that
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S[rl!r3!gH;f*(t)] = _S[r3!r1! 1/gH,_ f*(t)] (6)

Whence, both families of the “positively” and “negatively”
unbalanced rate functions, described the relatid@a and
(5b), may be treated as completely equivalent ones. Turning
back to the case of the symmetrical rate functi¢Rg we
notice that the outer slope coefficients are equal, thus, we set
a1=az throughout this paper. Now it follows that the gov-
erning parameters of the unforced drift are the balance factor
On, the slope parametar:= a; 3/ a,, and the driving force
f'(t). The slope parameteris a function of both the middle
slope coefficient, and the outers ones; 3. Thus the aver-
age characteristics of the driven BFs may be governed in two

ways: by tuning the middle slope coefficient and the outer. FIG. 2. The dependence of the asymmetry factor of the bihar-

_ Speed equatiof#a is transcendental, thus, the numerical yonic force versus the relative phade. Parameter values are
simulations have been used to derive the needed character@-:llz; (curve 3 n=2; (curve 3 n=4: (curve 3 n=6.

tics of the driven BFs. In the present paper we shall deal with
the biharmonic ac force that is described by a superpositiofrequently used in considerations of “soliton-ratcheis’y.,
of two harmonic modes. Let us discuss briefly the peculiarisee Refs.[5,6]). The following relation holds: s[m(wt
ties of the biharmonic driver. - o) +Ag]=sin(nwt— o+ AP). Whence, both discussed pa-
rameters,A¢e and A®, are completely equivalent. In what
follows we shall usé ¢ instead ofA®. Further, in the con-
sidered case of the dissipatiyextremely overdampedys-
The temporal symmetry of the driving force plays a verytem the average characteristics of the driven BFs are inde-
important role in considerations of the unforced drift, espependent on the initial conditions, i.e., they do not depend on
cially in the case of the “additivelnonparametricdriving.  the initial momentt, (see Refs[7,8]). Thus, we assume in
The asymmetrically oscillating ac force of zero-mean maywhat follows thatey=0.
serve as a basidpetus for the unforced transport gener- As noted, both cases of the symmetric and asymmetric
ated in the ordinary ratchets and ratchetlike systems perforndriver may be presented by the biharmonic function. The
ing the unidirectional drift of the self-ordered structures indegree of the asymmetry of zero-mean force may be evalu-
the spatially uniform media. The biharmonic force describedated by use of the asymmetry factgr defined by the rela-
by a superposition of the fundamental mode and its secontion yg:=(f\,+f.)/ (f\—f.), where the quantitie, >0 and
harmonic is frequently used in theoretical studies of the or{f_,,<0 denote the maximal deviatiorf&amplitudes’) of the
dinary and “solitonic” ratchetge.g., see Refd1,5,6). Fur-  driving force. Clearly, a rough estimate of the asymmetry is
thermore, recent studies carried out within the cubic polynogiven by use of the factoyg; in general, both the “degree” of
mial and the pseudolinear models of the bistable systerthe asymmetry of the driving force and the peculiarities of
showed that the average characteristics of BFs that wernde unforced drift depend on the shapefeft dependence
driven by the symmetrically and asymmetrically oscillating too. Let us turn to the symmetry properties of the biharmonic
zero-mean forces are rather differdsee Refs[7,8]). For  driver (7).
instance, the unforced drift of BF being under the action ofa The odd harmonic mixing (n=2m+1, where m
single-harmonic(symmetrically oscillating ac force disap- =1,2,3,..) describes the rigorously symmetric driver,
peared if the rate function was rigorously symmetric, namelywhereas the other case of the evénstands for asymmetric
if the relationR(u,—Au)=-R(u,+Au) was fulfilled[7]. Dif- one. The obvious relation holds: Ei@m+1)(¢+m)+A¢]

IV. BIHARMONIC DRIVER

ferently, the progressiveaccelerateddc drift of BF that was  =-sif(2m+1)¢+A¢e]. Whence, the contrasymmetricity re-
driven by the biharmonidasymmetrically oscillatingac lation f(t+T/2)=-f(t) is satisfied in any case of the odd
force occurred8]. mixing. Evidently, in the considered case of the atslone

Zero-mean force, symmetric and asymmetric one, may b@as thaty==0, quite similar to the case of the single-
presented by a superposition of the harmonic modes. Fafarmonic force. Differently, the temporal symmetry of the
simplicity’s sake we shall deal with the biharmonic force biharmonic force that involves even the superharmonic mode
described by the superposition of the fundamental mode an@venn’s) depends on both the relative phase and the
its nth superharmonic, factor n. More exactly, the asymmetry factoe(Ag) is the

_ ; _ . _ periodic function ofA¢, with the magnitude of the oscilla-
f() = fofsin (wt = go)] + be sinln(wt = ¢o) + A¢l;. (7) tions being decreased with increasing(see Fig. 2 The
Here the quantityf, denotes the amplitude of the fundamen- following relation holds:yz— 0 if n—occ. Furthermore, the
tal mode, the parametér stands for the relative strength of asymmetry factory: tends to zero ifA¢— mm. The given
the superharmonic mode, and the quantiteg and ¢, relation implies that the biharmonic ac force with even
= wty indicate the relative and initial phase, respectively. Tosuper-harmonic mixing is rigorously contrasymmetric,
avoid the confusion we notice that the otlierodified defi-  namely, the relatiorf(t—ty)=—f(ty—t) holds if the relative
nition of the relative phase, namely®:=Ap—(n-1)¢y, is  phase satisfies the equalityp=1,2m,3m,.... Here byt
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FIG. 3. Temporal symmetry of the biharmonic driver. Two kinds

of the contrasymmetric functiorfi§t) are shown by curve®\) and FIG. 4. Similarly shaped functiorfgt); the parameter values are
(B). The parameter values ang-=0, bp=1; (curve A) n=3, A¢ n=2,be=1/2,Ap=m/2; Ar=1/2, y==-1/3. The square-pulse ap-
=x/2; (curve B) n=2, Ap=1. Arrows show the symmetry. proximation(9) is shown by curvea).

we denote zero-point of the biharmonic functién. The  plitudesfy, and|f,| does not exceed the value 2. Moreover,
presented relatiof(t—ty) =—f(ty—t) stands for another crite- the asymmetry factor decreases very rapidly with the increas-
rion of the “rigorously” symmetric driver. Generally speak- ing n, as shown in Fig. 2. For instance, for the “highest”
ing, the contra-symmetry of the ac force implies that one ofasymmetry case, given by the relatioAgp=7/2 and bg

the following relations: eitheta) f(t+T/2)=-f(t) or (b) f(t = =1/2, onegets thaty(n=2)=-1/3, %(n=4)=0.1, v=(n

-ty =—f(ty—t) is satisfiedsee Fig. 3. Both given criteria of =6)=~-0.04, etc. The additional extra-modes should be in-
the temporal symmetry are almost equivalent;ikd, char-  cluded into expressiof¥) to achieve the higher asymmetries
acteristics of the “symmetrically” driven BFs are quite simi- of the driving force. Nevertheless, the analytic treatment of
lar in both cases discusséskee below, Fig. b It should be  the directed drift generated by the multiharmonic force
noted that the single-harmonic function, which describes theeems to be complicated. Similarly as in Relfg,8], to

ac driver is of the “highest” symmetry, satisfies both theachieve the needed asymmetries of the driving force we have
“translational-invariance” condition@) and the “inverse- used the square-pulse “approximation” described by expres-

symmetry” (with respect to zero-poirty,) property(b). sion (see Fig. 4

Turning back to the case of the eve’s we notice that the
periodicity of the asymmetry factoy=(A¢) implies that both f(t) = {fM1 NT<t<nT+Ty, )
intervals [0,7r] and [, 27] of the variableAp are com- fy NT+Ty <t<(n+1T.

pletely equivalent. Namely, the following relations hold: . - .
_ _ — As previously, the quantitiel, andf,,, denote the amplitudes
Ar(A@)=11Ac(2m~Ag) and A(A@)=1/Ac(m+Ag), where (R Kol parametefs, and T,, indicate the “half-

rperiods" of the driving force, namely, one has that T,
+T,. To satisfy zero-mean condition we demand that
‘Ei'm/TMzAF, where byAr we denote the ratio of the ampli-

the quantityAg:= —f\,/ f,, denotes the ratio of the amplitudes.
Further, the biharmonic driver consisting of the superpositio
of the fundamental mode and its second harmonic is of th

highest asymmetry. The maximal asymmetry facter is tudes Ar=—fy/f The asymmetry of the square-wave func-

achieved by takingi=2 andA¢=7/2 (or equivalently,A¢ . i / ) )

: . tion (9) is arbitrary: by tuning the free parametdig andT,
=3mx/2). For the considered case of the highest asymmet%lithi(n)the interva>ll(0 Zc) oneggets @:Ap<oo or di@ferentl?
the dependence of the asymmetry factor versus the relative ' F ' '

. . . . L —1<ye<l.
amplitudeby. is described by the following expressions: The strength of the asymmetric driver depends on the am-
Ar-1 bﬁ +1/8 plitudes(maximal deviationsf,, andf,. When considering
Y= v A= (8) v—Tf, characteristics we shall use the average amplitiyde
Ar+1 be(1 +b)

:=(fy—Tm/2, which indicates the “effective” strength of the

From Eq.(8) it follows that the extreme, absolutely maximal driving force. Further, in what follows we shall deal with the
asymmetry of the biharmonic driver is achieved by takingsimilarly shapedfunctionsf(t); the ratio of the amplitudes
be=1/2. Namely, one has thayy=-1/3 andA=1/2, by f, andf, will be kept fixed, when the strength of the driving
taking Ap=m/2. Quite similar, in the other case of the “op- force is changed. The-f, characteristics presented below
posite” asymmetry, defined by the relatidrp=37/2, one  have been derived using the similarly shaped functidbs
gets thaty.=1/3 andA-=2. Finally, the dependence of the Turning back to the biharmonic driver we notice that the
asymmetry factor versus the relative amplitugleis non-  strength of the biharmonic ac force depends on the param-
monotone. For instance, one gets thatbr=1)=7/25 and etersf,, bg, A, and the integen. By tuning the amplitude
ve(be=1/4)=1/4, bytakingn=2, andAp=1/2. of the fundamental modg&, one arrives to the family of the

We conclude by noting that the asymmetry of the bihar-similarly shaped function§ (t; fy)}, if the rest parameters are
monic force is relatively low; the maximal ratio of the am- kept fixed (see Fig. 4. Once again, both the ratio of the
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amplitudesAr and the asymmetry factoy: are fixed within

the considered family of the similarly shaped functions. Let
us turn to the driven BFs, let us discuss the characteristic
features of the unforced drift generated by the asymmetric
driver.

V. UNIDIRECTIONAL DRIFT INDUCED BY

ASYMMETRICALLY OSCILLATING ZERO-MEAN FORCE 0 0'2 d4 ¢

The unforced dc drift of BF takes place if either the rate P 2
function or the driving force breaks the symmetries dis- Te,.~
cussed above. The considered dc drift disappears if both the n \
rate function and the driving force are rigorously symmetric, 21

namely, if the “contrasymmetry” conditionR(u,—Au)

=-R(u,+Au) and the temporal symmetry relation, either FIG. 5. The dependence of the drift velocigrbitrary unit$ of
f(t+T/2)=—f(t) or f(t—ty)=—f(ty—t), are satisfied. In the the symmetrically driver_l BF versus t_he amplitufie The driving
present paper we shall deal with the case of the broken synf0rces arecurve 1 the single-harmonic force1=1; (curves 2, 2,
metry above labeled bjRs—f,. The particular case of the 2and 3 the case of the odd harmonic mixing=3 andn=5, respec-
asymmetrically oscillating zero-mean force and thgm- tively; (curve b) the case of the even superharmoniz2 and

. - . . Ag=1. The parameter values are0.2, y==0; (curves 1, 2, 3b)
metrical rate functiongRg} is considered, thus, we take that gu=1.1: (curve 2) gy(2a)=1/gy(2) ~ 0.91. Other parameter val-

f1=rs=r. - ) i ues argcurves 2, 3, 3) bg=0.5,Ap=m/2; (curveb) bg=0.5. The
. The strength of the driving force, the maximal amp ItUde’contra-symmetric curve®) and(2a) illustrate the symmetry prop-
eitherfy, or f,, cannot exceed the extreme value of the rateerty ).

function, eitherRy, or R,, respectively. The middle zero-
pointu, of the modified rate functioRe and the outer, either  tudef,. More specifically, the unforced drift, the shift of the
vy Or v, closely approach to each other if the amplitude ofmean velocity of BF takes place if the Maxwellian construc-
the similarly shaped functiof(t) tends to the critical value, tion of the rate functiorR(u) is unbalanced, i.e., if the bal-
either Ry, or Ry, The criteria of the global stability of the ance factogy, satisfies the inequality,, # 1. Differently, the
driven BF read,fy <Ry and|[f,|<|R,|. Otherwise, using motionless BF, which stays initially at rest, cannot gain the
the scaled unities we demand thigfi<(1+hg)™* and [f,|  dc motion discussed, in each case of the symmetric driver,
<hg(1+hg)™. regardless to the peculiarities 6t dependencdsee the
Before discussing the peculiarities of the directed driftstraight thick line in figurg Thus we conclude that the di-
generated by the asymmetrically oscillating zero-mean forceected drift disappears if both the rate function and the ac
let us touch briefly on the dc drift induced by the rigorously driver are rigorously symmetric, namely, if the equalities
symmetric driver. As noted, two kinds of the “rigorously” R(u,—Au)=R(u,+Au) and, eitherf(t+T/2)=-f(t) or/and
symmetric functiond(t) exist. Furthermore, the biharmonic f(ty—t)=—f(ty+t), are fulfilled. This conclusion was sup-
driver with the odd harmonic mixing is strictly symmetric, in ported by our direct calculations that have been performed
any case. At last, the biharmonic function consisting of ausing various “combinations” of the symmetrically oscillat-
superposition of the fundamental mode and its even supeing force(7). It is interesting to note that a similar result was
harmonic is “rigorously” symmetric too, if the relative phase recently obtained in the case of the topological soliton that
was taken af\p=mm. We already noted that the character- was driven by biharmonic ac ford®); the directed motion
istic features of the unforced drift generated by the rigor-of the sine-Gordon kink being under the action of the bihar-
ously symmetric driver are quite similar, no matter what kindmonic force consisting of the superposition of the fundamen-
of the “rigorous” symmetry, eithef(t+T/2)=-f(t) or/and tal mode and its third superharmortit=_3) disappearedsee
f(ty—t)=—f(ty+t), was satisfied. The typical-f, character- Ref.[5]). Clearly, the “rate function’{nonlinearity of sine-
istics of the symmetrically driven BFs, followed from speed Gordon equation is rigorously symmetric.
equation(4a), are shown in Fig. 5. All above discussed ver-  In continuing the discussion of the symmetrically driven
sions of the symmetric driver are presented. Thesgara BFs we emphasize that the considetedf, dependencies
single-harmonic forcgcurve 1), (b) the biharmonic force are very close to each other in any case of the “odd mixing”
with the odd harmonic mixingcurves 2, 2a and)3and(c) (n=3,5,7,9,..), if the rest parameters of both the driving
the biharmonic force with the even superharmonic mixingforce (fo, bg, andA¢) and the rate functiofr andgy) were
(the particular case of the superharmonic mode2 and taken fixed. Broadly speaking, the relative deviatian/ vy,
A=) (curve B. It is easy to see that the presentedf,  does not exceed the few percent if one takes thats,
characteristics are very similar to those given in the case ofvhere byAv we denote the maximal deviation of the drift
the single-harmonic forcesee also Ref47,8]). The progres-  velocity and the quantity,:=v(fy,) indicates the drift ve-
sive (accelerated dc drift of the initially propagating(s, locity taken at the maximal driving force. The steepness of
#0) BFs was occurred, namely, the magnitude of drift ve-y—f, characteristics depends on the slope paramet€he
locity [v| monotonically increases with the increasing ampli-considered characteristics become more and more flattened if
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FIG. 6. The dependence of the maximal drift velociybitrary
units) of the symmetrically driven BF versus the relative phAge
The parameter values are0.2,94=5/4; y==0, b=0.5; (curvea)
n=3, (curveb) n=5, (curvec) n=7.

FIG. 7. The dependence of the drift velocigrbitrary unit$ of
the asymmetrically driven BF versus the amplitfgeThe param-
eter values arécurves 1 and ) n=2; (curves 2, 3n=2,6,respec-
tively. The other parameter values are0.2, gy=1, bg=0.5;
) o i (curves 1 and BAp=/2; (curves 2 and ) Ap=37/2. The asym-
the slope parameterincreases, quite similar as in the other metry factors arécurve 3 y-=-1/3; (curve 2 y~-0.1; (curve 3
case of the asymmetrically shaped rate functifRg (see Ye~=-0.04; (curve 1) y==1/3.
Ref.[8]). The “size” of the driving effect, the maximal drift
velocity vy, of the symmetrically driven BF depends on the  The main conclusions concerning the discussed case of
relative phaseé\ ¢ that governs the shape 6ft dependence. the directed drift have been confirmed by our direct calcula-
The dependence of the maximal drift velocity versus theions that have been performed by use the cubic polynomial
relative phase is shown on Fig. 6. The presenigg-A¢  (symmetrical rate functions Rg=a(u—wy)(u—ws)(u—ws)
dependencies show that the maximal drift veloeify, is the  +C satisfying the relatiomv;—w,=w,—w; > 0. It is interest-
periodic function ofA¢, with the amplitude of the oscilla- ing to note that —f, dependencies given in both cases of the
tions decreasing with the increasimg The considered de- cubic polynomial and pseudolinear rate functions are very
pendencies become very flattened if the integes large  close to each other if the slope coefficients of pseudolinear
enough, namely, if the relation=2(m+1)>1 was satisfied function (3) are taken in accordance with the relatian
(see curve c in figune Hence, the “efficiency” of the rigor- =Ry (w;) (clearly, both the drift velocity and the amplitude
ously symmetric driver satisfying the relatior> 1 is nearly  f, should be taken is the scaled units defined apoVhe
constant, i.e., it does not depend on the frequency of theeculiarities of the directed drift generated by the rigorously
“supermode” (within the quasistatic approximation uged symmetric driver and theymmetricalrate functionsRg(u)
Referring to the other case of the nearly symmetric driverwill be discussed more inclusively elsewhere. Let us turn to
defined by the relations=2m>1 and y-<1, we note that the other case of the evers; let us discuss the unforced
v—f, characteristics of the “almost” symmetrically driven drift of the asymmetrically driven BFs.
BFs are very similar to those given in the case of the rigor- As noted, the asymmetry of the biharmonic driver consist-
ously symmetric driver. Small deviations between two dis-ing of a superposition of the fundamental mode and its even
cussed types aof - f, characteristics occur only in the limit- superharmonics depends on both the relative phasand
ing region of the high strengths of the driving force, whenthe integern, which indicates the frequency of the even
the amplitudef, approaches to the critical valuig,, (See  mode. The asymmetry factgr decreases very rapidly with
below, Fig. 3. The considered deviation vanishes in the limit the increasingn; the asymmetry facto: does not exceed
n— . Roughly speaking, all biharmonic drivers satisfying the value of few tenths if one takes that2m>4 (see Fig.
the relationn>1 may be treated as symmetric ones, no mat2). As discussed, the average characteristics of BFs being
ter what superharmonic mode, odd or even, was involved. under the action of the biharmonic force consisting of a su-

In closing the discussion of the symmetrically driven BFsperposition of the fundamental mode and its higher superhar-
we summarize that the progressitaccelerateddc drift is  monics are quite similar to those given in the case of the
generated by the symmetrically oscillating force if the raterigorously symmetric driver. The-f, characteristics shown
function issymmetricaland “unbalanced,” i.e., if Maxwell- in Fig. 7 illustrate the dependence of the “size” of the driving
ian construction of the rate function was not balanced. Theffect versus the frequendintegern) of the even superhar-
unforced dc drift disappears if both the rate function and thenonic mode. The particular case of the rigorously symmetric
driving force are rigorously symmetric, namely, if the fol- rate functionR(u,—Au)=R(u,+Au) is presented. The given
lowing relations hold:(a) R(u;—Au)=R(u,+Au) and (b)  characteristics demonstrate that the progressive dc drift of
f(t+T/2)=-f(t) or/and f(t—ty)=-f(ty—t). The considered the initially static BFs being under the action of the asym-
dc drift is more pronounced, nametly;-f, characteristics of metrically oscillating zero-mean force takes place. As ex-
are more rapid if the slope parameteis lesser; the steep- pected, the “size” of the driving effect decreases very rapidly
ness of the characteristics increases if the ifpaten slope  with the increasing; the v -f, dependencies become more
coefficient of the rate function increas@tecreases and more flattened if the frequency of the superharmonic
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mode increasegcompare curves 1, 2, and.3he presented Vi ¢ 12
dependencies evidently show that the maximal driving effect
is achieved with the highest asymmetry force defined by the
relationsn=2, bp=1/2 andAp=(m+1/2)7 (see curves 1
and 1a. The considered characteristics that are related to the
higher super-modes>4 are very flattened; the dc drift is
practically disappeared in the whole interval of the ampli-
tudesf,, except the narrow interval lying in the vicinity of
the extreme amplituded,=f (see curve 3 in Fig.)7 At
last, the propagation direction of the asymmetrically driven
BF that is described by the rigorously symmetric rate func-
tion depends on the sign of the asymmetry facipr The
following relations holdw >0 if =<0 andv <O if y=>0. ) _ o
The presented inequalities imply that the modified Maxwell- FG. 8. The dependence of the maximal drift velodiybitrary
ian rule holdsy >0 if S,>0 andv <0 if S,<0, where byS, units) of the initially static BF versus the relative phade. The
we denote the total area enclosed by the rate fundign Parameter values argy=1, b-=0.5; (curves 1, 2, n=2,4,6,
=R(u)-f,. Clearly, the given inequalities are in agreementrESpeCtlvely’ and=1; (curve 1) r=0.1 andn=2.
with the symmetry relatios(r,gy;f")=-s(r,1/gy;-f") fol-  disappear at any strength of the driving force if one takes that
lowed directly from Eq.6) (compare curves 1 and Jla Ap=A¢s Further, the maximal drift velocity decreases very
It should be noted that the progressive dc drift of therapidly with the increasing, as shown by curves 1, 2, and 3;
initially static BF takes place too in the other case of thethe dc drift practically disappears if one takes timat 4.
“opposite” Ry—fs symmetry, discussed in Ref8]. More-  Furthermore, the presented curves 1 and 1a confirm our pre-
over, the progressive dc drift generated in the case of theious conclusion: the maximal driving effect is achieved
“opposite” symmetry satisfies the relations>0 if hgy>1  with the highest asymmetry force satisfying the relations
andv <0 if hg<1. To draw some closer parallels between=2 and Ap=(m+1/2)7. At last, y=—A¢ dependencies
two discussed cases of the asymmetry, labeleBdyf, and  shown by curves 1 and l1a evidently show that the driving
Ra—fs, we introduce the factdg:= Ac/hg, which indicates  effect is more strongly pronounced at the lesser value of the
the ratio of “asymmetries” of both the driving force and the slope parametar. Whencep - f, characteristics taken at the
rate function. The obvious relations holz>hg if keg>1  larger (smallep value of the inneouten of the slope coef-
andAg <hgif keg<<1. Now, the “modified rule” that encom- ficient «; will be steeper.
passes both cases discussed read$ if keg>1 andv >0 We already noted that the asymmetry of the biharmonic
if ker<<1. The unforced drift generated by the balanced ratdorce is relatively low; more exactly, the following relations
function, eithersymmetrical(Rs) or asymmetrical(Rn), iS  are satisfied: —-1/& y=<1/3 and 0.5< A-<2. Differently,
always directed toward the stabile stateif the inequality the asymmetry of the square-pulse functi@) is flexible;
ker>1 holds, and differently, the penetrated state of the inithe following relations hold: —¥ <1 and O0<Ag<co.
tially static BF isus if keg<<1. Clearly, the limiting case Moreover, the size of the driving effect depends on the shape
given by the relatiork-g=1 stands for the “totally” symmet- of f—t dependence. The maximal driving effect is achieved
ric DFR, labeled byRs-fs. Both the rate function and the with the periodic functiong(t) that are characterized by the
driving force are rigorously symmetric in such a case; thudlattened profiles in the vicinity of the maximal deviations
one getw=0, in accordance with the “modified rule.” Thus (amplitude$ f,, and f, (see Refs[7,8]). Thus the periodi-
we conclude the asymmetric driving plays a quite similarcally oscillating square-pulse driver of zero-mean seems to
role as the asymmetry of the rate function; the characteristibe more “effective,” if compared to a biharmonic one. The
features of the directed drift generated in both cases of theefficiency” of both drivers, described by the biharmonic and
“opposite” asymmetry are quite similar. the square-wave functions, is demonstratedvfjy—y de-
Turning back to the unforced drift of the asymmetrically pendencies shown in Fig. 9. The presentggd—y- depen-
driven BF, generated by the rigorously symmetric rate funcdence shown by curva corresponds to the biharmonic
tion, R(u,—Au)=R(u,+Au), we note that the “size” of the driver of the highest asymmetiy-=1/3). As expected, the
driving effect, the maximal drift velocity,, which indi-  efficiency of the square-pulse force is much more higher. The
cates the steepness of f, characteristics, depends on both ratio of the maximal drift velocities,, taken at the ex-
the slope parameterand the relative phaske. The depen- tremes of both curve) and(a) approximately equals 4. In
dence of the maximal drift velocity versus the relative phaseaddition, both curvegb) and (a) are contrasymmetrically
is shown in Fig. 8, for the different values of the integer shaped ones, namely, the relatigp(—v¢) =—vmx(¥) holds,
As expected, the maximal drift velocity is periodic function in agreement with the symmetry relati¢f). Nevertheless,
of Ag, in accordance withyz—A¢ dependence discussed the character of the considered dependences is rather differ-
above(see Fig. 2 The “stopping” pointsS shown by arrows  ent; v,—v; dependence shown by curbds nonmonotone,
on Fig. 8 satisfy the relatiomy,(Apg)=0. The following in contrast to that given by cuna The extremeabsolutely
relation holds:Aes=mar. As discussed, the biharmonic ac maxima) value of the velocityvy, is achieved with the
force with the “even mixing” is rigorously symmetricy=  square-pulse function of the “optimal” asymmetry described
=0) if one takes thap=A¢s Thus, the directed drift will by the relationyz=vy- = ¥ 0.2. We emphasize, that the “op-
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FIG. 9. The dependence of the maximal drift velociybitrary
units) of the initially static BF versus the asymmetry factgr. The Da
driving forces are square-pulse for¢®) (curve b); biharmonic
force (7) (curve a). The parameter values agy=1, r=0.2, and FIG. 10. The dependence of the drift velodigrbitrary units of
be=0.5. Two cases of the “opposite” asymmetry of the biharmonicthe asymmetrically driven BF versus the amplitifgeThe param-
force, ye<0 andy>0, correspond to the different intervals of the eter values are= 0.1,Ar=0.7, andys=-0.18; curves1, A, 2, 3, 4,
relative phase\¢:[0, 7] and[, 27], respectively. B, 5) gy~ 1.40,1.0,0.80,0.75,0.73,0.70,0.55, respectiviyrve
B) kFR:l'

timal” values of the asymmetry factos,_ and y,, do not
depend of the slope parameter Differently, the maximal
drift velocity, namely, the magnitude,,(y-)|, taken at the struction of the rate function is not balanced in this case,
“optimal” asymmetry of the ac force increases with the de-namely, the inequalitiebz# hy andg, # 1 hold. As earlier,
creasingr. As noted, thevy,— ¥+ dependence related to the we shall deal with the symmetrically shaped rate functions
biharmonic forcgcurvea) is monotone; the maximal driving {Rs}-

effect is achieved with the highest asymmetry force satisfy- From Eq.(6) it follows that the dc drift generated by the

ing the relationyg|=1/3. similarly shaped rate functions satisfy the symmetries
In closing the discussion of the unforced drift generated

by the rigorously symmetric rate functions(u,—Au) v(r,gu; ve, fa) = —o(r, 1gn; = e, fa), (6a)

=R(u,+Au), we conclude that the progressive dc drift of the

asymmetrically driven BFs occurred. The size of the driving v(r,gn;Ker, fa) = —u(r, 1/gy; Lker, o), (6b)

effect, and the shift of the mean velocity of the ac driven BF, ) ] ]
depends on both the slope parametaf the rate function if one keep_s in mind that the two contrasymmetric forces of
and the asymmetry factoy. that characterizes the asymme- the opposite asymmetry satisfy the relatidit; ye, f,)
try of the driving force. The drift velocitymagnitudg of the ~ =—f(t; = fa). The presented equaliti¢§a) and (6b) show
unforced drift of BF increases with the decreasing slope pathat the dc drift generated in both cases of the “positively”
rameterr. The maximal driving effect of BF being under the (94>1) and “negatively”(gy <1) unbalanced rate functions
action the biharmonic ac force consisting of a superpositioris corelated. More specifically; - f, characteristics gener-
of the fundamental mode and its even superharmonic igted by two “oppositely” unbalanced rate functions,
achieved with the highest asymmetry ac force satisfying thé(u;r,gy) and R, (u;r,1/gy), will be contrasymmetrically
relationsn=2, b-=1/2 andA¢=(m+1/2)7. The increase of shaped ones, if the driving forces were taken contrasymmet-
the frequency of the even super-harmonic mode shrinks théc ones, namely, if the relatiofy(t; yg, ) =—f; (t; =y, fo)
driving effect, i.e., the drift velocity of BF decreases with the was satisfiedsee Fig. 11 beloy
increasingn. Finally, the size of the driving effect depends  Keeping in mind symmetry relatiori§a) and(6b), let us
on the peculiarities of -t dependence. The unforced drift of begin with directed drift induced by the ac force of the
BF, generated by the square-pulse ac force is much mor@egative” asymmetry, defined by the relatigp<<0. The
strongly pronounced, if compared to that given in the case ofase of the opposite asymmetry >0, will be discussed
the biharmonic ac force. The drift velocity of BF being under below (see Fig. 1L As noted, the asymmetry of the bihar-
the action of the square-pulse driving is a nonmonotonignonic force is low. Differently, the asymmetry of the ac
function of the asymmetry factoyg; the “optimal” asymme- square-wave functiort9) is flexible. The periodic square-
try of the considered zero-mean force, which induces thgulse force of zero-mean will provide us with a generic pic-
maximal driving effect, exists. The maximal driving effect is ture of the unforced drift generated by the driving force of
achieved if the asymmetry factor, the square-pulse driveithe arbitrary asymmetry. The typical-f, characteristics of
was taken as followsyr~= +0.2. the initially propagating BFs that are driven by the asymmet-
Let us turn to the other case of the initially propagatingric square-pulse force of the negative asymmejgy<0) are
BFs being under the action of the asymmetrically oscillatingpresented in Fig. 10, for a wide interval of the balance fac-
zero-mean force. Differently as in the previous case of thdorsgy. As previously —f, dependencies shown in Fig. 10
“globally” symmetric rate function, the Maxwellian con- are quite similar to those given in the case of the opposite
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curve 4. Quite similar to the case Bj,—fg symmetry, both

the stopping of the initially propagating front, that is driven
at the maximal driving force, and the reversal of the directed
motion of BF take place. The wideness of the intermediate
region, the interval of the balance factadrgy corresponding

to the intermediate characteristics of “nonprogressive” type
depends on the asymmetry of the driving force. The follow-
ing relation holds:Agy=A—-1. More exactly, the balance
factors gy of the rate functions that generate “nonprogres-
sive” drift are described as followsy, € (1,Agy). The fol-
lowing relations hold:Agy>0 if >0 andAg, <0 if v

< 0. Thus it follows thatAgy — O if v — 0; the intermediate
region vanishes in the limiting case of the rigorously sym-
metric driver. More specifically, the intermediate f, char-
acteristics become more and more flattened if the asymmetry
factor tends to zero. This conclusion is in good agreement
ith our previous result discussed above: nonprogressive dc

FIG. 11. The dependence of the drift velocigrbitrary unity

versus the amplitude of the driving force. The parameter values ar if b ; e . .
r=0.1; (solid curves gy=0.7; (dashed curves @ and L) gy rift was absent in any case of the “rigorously” symmetric ac

~1.4. The other parameter values #cerves 1, 2, Bye~-0.41, force (see Fi_g._ 5. Furthermorg, the increase of the asymme-
~0.23,-0.20, respectivelycurves h, 2a) ye~-0.67,-0.78, re- Y of the driving force, or differently, fhe d(_ecre:,ase of the
spectively, (curves T and ) ye(2C)=—ye(2)=~0.23 and asymmetry factore (negative shifts the “marginal” curve B
ye(3C)=0.20; (curve H) g4=0.9, n=2, be=1/2, Ae=m/2, v toward the lesser values of the balance fagigrAs a con--
=1/3. sequence, the shape of both the “reversal” and “stopping”
characteristics, shown by curves 2 and 3 in Fig. 10, is
symmetryR,—f5 (see Ref[8]). The characteristic features of slightly modified if the asymmetry of the driving force was
the unforced drift generated in both cases of the DFR satighcreased. More exactly, the negative slope of both the “re-
fying the symmetrieRs—f, and Ry~ fg practically coincide versal” and “stopping™ —f, characteristics decreases with
(see Fig. 3 in Ref[8)). It is easy to see that-f, dependen- the increasing asymmetry of the of the ac force, until the
cies shown in Fig. 10 confirm our previous conclusion: bothderivative dv/df, becomes positively defined in the whole
the asymmetric driver and ttesymmetricalasymmetrically ~ interval of the “argument’f,. Two different kinds of the
shapedl rate function play quite similar role. More specifi- “reversal” and “stopping” characteristics are shown by
cally, two families of the differently shapag-f, character- curves(l, 2) and(la,2a) in Fig. 11. One can see that the
istics, monotone and nonmonotone ones, shown in the figureharacter ofv —f, dependencies taken in both cases of the
are separated by the “marginal” curves A and B satisfying thdow (|| <0.5; curves 1 and)2and high(|y£| >0.5; curves
relationsgy =1 (or differently, ker=A¢) and gy=A (other-  laand 2) asymmetry of the driving force is rather different.
wise, kegr=1). Both of these are related to the different typesRegretfully, it was not able to receive the rigorous criteria, to
of the unforced migration. More exactly, monotone curves I1derive the “critical” values of the parameters responsible for
and 5 satisfying the relation®) dv/df,>0 and(b) dv/df, the “transition” from the monotone -f, characteristics to
<0, respectively, show that the progressive dc drift of BFnonmonotonic ones, even in the case of the square-pulse
takes place. Namely, the magnitude of the drift velo¢ihe  force. The considered “transition” depends on many factors:
absolute valuelp|) of BF is monotonically increasing func- the degree of the disbalance of Maxwellian construction, the
tion of the amplitudef,. Both discussed kinds af-f, de-  shape and the asymmetry factor of the driving force, etc. In
pendencies that describe the progressive drift satisfy the relosing the discussion of the intermediate characteristics we
lations(a) gy > 1 (shown by curve lland(b) g4 <A (shown note that the reversal type of the unforced dc drift of BFs
by curve 5. Referring to the other case of the negative asym-shows that the bistable system being under the action of the
metry, y=>0, we notice that the progressive type of the di-asymmetrically oscillating zero-mean force could arrive at a
rected motion satisfies the reciprocal inequalities, namelypontrivial behavior, even in the case of tlsymmetrical
gy <1 andgy>Ag, in accordance with symmetry relations (symmetrically shapedrate function: the “phase transition”
(6a) and (6b). As noted,v—f, dependencies generated in from the less stable state toward more stable one was oc-
both discussed cases of the opposite asymmegsz0 and  curred. It is interesting to note that the reversal type of the
v=>0, are contra-symmetrically shaped on@ee below directed motion of BFs takes place too in the previously
Fig. 11). discussed case of the opposite asymmetry labeledRby
The intermediate characteristi¢shown by curves 2, 3, —fs(see Ref[8]).
and 4 in Fig. 10 that are located in-between the limiting  We already noted thab—f, characteristics satisfying
curves A and B satisfy the relatioh- <g,<1. Similarly as  symmetry relationg6a and (6b) are contrasymmetrically
in the case of the “opposite” symmetiig,—fs, different  shaped ones. This property is demonstrated by, depen-
types of “nonprogressive” drift were occurred. These are aslencies shown by curveg®,3) and 22,3C) in Fig. 11. The
follows: the reversal type of the directed driturve 2, the  presented dependencies that have been derived by use of the
stopping of the initially propagating BFcurve 3, and the square-pulse functiort9) satisfy the relationgy(2C,3C)
“regressively-progressive” motion shown by nonmonotonic=1/g4(2,3) and y:(2C,3C)=-yx(2C,3C), and are rigor-
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=1/2,whereas the driving force related to the more flattened
curve 2 is described as follows=4, br=1/2 andy-=0.1.
The presented curves show that the maximal drift velocity
vmx IS the periodic function ofAe, in agreement withyg
—-A¢p dependencies discussed in above. Moreover, the pre-
sented curves 1 andalthat satisfy the relationg(la)
=1/gy(1) and ye(la)=-7ye(la) are contrasymmetrically
shaped ones, in accordance with the symmetry relatiéas
and (6b). The driving forces related to the curves 1 arad 1
24\ 7 * are contrasymmetrically shaped, namely, the equdlity)
3. N s A B =-f1,(t=T/2) holds. Furthermore, zero pointd and B
~"la (shown by arrows in figupeof both characteristics 1 ancal
strictly coincide. This implies the “critical” strengths of the
] ) driving forces that induce the stoppiriceversal of the ac
trary unity c_’f BF V'irsus, the relative phiﬂw‘ The _parameter driver? BF strictly coincide if the rate functions and the driv-
values arer=0.2, bg=0.5; (curves 1, &) n=2, gy(la)=1/gy(2) . . .
~0.95, y¢(18)=—y.(1) ~ 0.33: (curve 3 n=4, y.~0.10. The stop- N9 forces are contrasyn?metncally shap.ed ones, namely, if
ping pointsA andB (shown by arrows one takes that(a) Ry(u;r,gy) and f_l(t,yp,fa), or (b)
Ria(u;r,1/gy) andfi,(t;—ye,fo). The discussed zero points
ously contrasymmetric ones, in accordance with H§a) A and B satisfy the relatiorvy,(Aga)=0, which implies
and (6b). that the stopping of the BF being under the action of the
As discussed, the progressive dc motion and the othemaximal deriving force was occurred. Thg,—Ae depen-
types of the spurious drift described by “intermediate” dence shown by curve 2 is flattened; the dc drift induced by
—f, characteristics take place in both cases of the high antghe low asymmetry ac force is less pronounced. The ratio of
low asymmetry of the driving force that was approximatedthe maximal drift velocities taken at the extremes of both
by the square-pulse function. Nevertheless, the intermediateurves 2 and 1 approximately equals 0.4. Finally, curve 2
characteristics become very flattened if the asymmetry of theonfirms the previous conclusion: small values of both the
driving force is low. In addition, the steepnessweff, char-  dishalance factog, and the initial velocity of BFs, are
acteristics depends on the shape feft dependence; the required to achieve the discussed reversal with the low asym-
square-pulse ac force is more “effective” if compared to bi-metry ac force(see curve 2; zero points have disappeared
harmonic one. Finally, the maximal asymmetry factors of In closing the discussion we summarize that the various
both the biharmonic and the square-pulse functions are ratheypes of the unforced dc drift of BFs are generated by the
different. As a consequence;-f, dependencies generated symmetricalrate functions if the driving force of zero mean
by the biharmonic ac force are much more flattened if comis asymmetrically oscillating one. The characteristic features
pared to those given in the case of the square-pulse functioof the directed drift generated in the caseRaf f, symmetry
This conclusion is illustrated by curvé in Fig. 11. The are quite similar to those earlier obtained in the other case of
presented —f, dependence shown by curtewas derived the “opposite” symmetry labeled B, —fs. The progressive
with the highest asymmetry force described by the relationsaccelerate) regressive(deceleratedand reversal types of
n=2, bg=1/2, Ap=7/2, and y==-1/3. As expected, the the unforced dc drift of BFs take place if the rate function is
considered dependence is more flattened if compared tanbalanced,” namely, if Maxwellian construction of the rate
those given by curves 1 anca1The lesser values of the function is not balanced. The parameters that govern the un-
disbalance factoAgy:=|gy—1| are required to achieve the forced drift are as follows: the asymmetry factgt of the
reversal drift of BF that is driven by the biharmonic force. driving force, and both the slope paramat@nd the balance
For instance, the ratio of the factorsg, related to both factor gy of the rate function. The decrease of the slope
curves 1 andH approximately equals 4, i.e., one has thatparameter enhances the driving effect. The dependencies of
Ago(1)/Agg(H)=4. This implies that the reversal of the BF the drift velocity of BF versus the rest parameters, the asym-
being under the action of the biharmonic ac force may bemetry factoryg the balance factayy, generally speaking, are
achieved if the deviation of Maxwellian construction from nonmonotone ones. The optimal asymmetry of the driving
the strictly balanced situation is relatively small, or differ- force, that induces the maximal driving effect, exists.
ently, if the initial velocity of BF was small enough. The
steepness of —f, characteristics related to the biharmonic VI. CONCLUSIONS
driver depends on both the slope parametand the relative
phaseA¢ that governs both the shape and the asymmetry of The unidirectional drift of the bistable fronts that separate
the driving force. As previously, the considered characteristwo stable uniform states of the bistable system under the
tics are more rapid if the slope parameteis lesser. The action of the asymmetrically oscillating zero-mean force was
dependence of the maximal drift velocity, which indicatesconsidered within the “pseudolinear” model of the system.
the steepness of—f, characteristics, versus the relative The unforced dc motion generated by Byemmetricalsym-
phaseA¢ is shown in Fig. 12. Theyy,—A¢ dependences Metrically shapedrate functionsRg(u) and the asymmetri-
shown by curves 1 andalhave been derived with the high- cally oscillating zero-mean drivefiy(t) was examined. We
est asymmetry force satisfying the relations2, andbe  found that the average characteristics generated in the case of

FIG. 12. The dependence of the maximal drift velodiaybi-
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Rs—fa symmetry are quite similar to those given in the “op- creases if the asymmetry factor of the ac force increases.
posite” case ofRy—fg symmetry, previously discussed in Differently, in the other case of the ac force, described by the
Ref.[8]. Different types of the unforced dc drift of the asym- periodic square-pulse function, the dependence of the drift
metrically driven BFs were occurred. It was shown that thevelocity of BF versus the asymmetry factge is nonmono-
progressive(accelerated regressive(decelerated and re- tone. The “optimal” asymmetry of the driving ac force that
versal(regressive-progressiygypes of the directed drift take induces the maximal driving effect exists.
place if the rate function is “unbalanced,” namely, if Max-  The particular case of the biharmonic driver consisting of
wellian construction of the rate function was not balanceda superposition of the fundamental mode and its even or odd
The “nonprogressivelregressive, reversal, etdypes of the  superharmonics was considered. The biharmonic ac force
unforced motion of BFs vanish if Maxwellian construction with the odd harmonic mixing is rigorously symmetric, in
of the rate function is strictly balanced. any case of the “odd mixing.” As a consequence, the average
The governing parameters that significantly influence thecharacteristics of BFs being under action of the biharmonic
directed drift of BFs are as followsa) the slope coefficients ac force described by a superposition of the odd harmonics
of the rate function(b) the balance factog,;,, which indi-  are quite similar to those given in the case of the single-
cates the disbalance of Maxwellian construction of the ratdnarmonic force. Differently, the biharmonic ac force de-
function from the strictly balanced situation, arid) the  scribed by a superposition of the fundamental mode and its
asymmetry factor that indicates the “degree” of asymme- even superharmonics is asymmetrically oscillating one. The
try of the driving force. The decrease of the slope parameteftsize” of the driving effect, the shift of the mean velocity of
r enhances the driving effect; the shift of the drift velocity of the asymmetrically driven BF being under action of the bi-
the driven BF is more strongly pronounced at the lesser valharmonic ac force depends on the asymmetry fagiar
ues of the parameter The dependence of the drift velocity which is governed by the frequency, the relative phase and
versus the parametegg and yg, generally speaking, is non- the relative amplitude of the superharmonic mode. The maxi-
monotone. In particular, average velocity of the initially mal driving effect of BF is achieved with the biharmonic
static (motionles$ BF being under the action of the bihar- force consisting of a superposition of the fundamental mode
monic ac force, which asymmetrically oscillates in time, in-and its second superharmonic.
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