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The unidirectional drift of bistable frontssBFsd that separate two stable uniform states of a bistable system
under the action of an asymmetrically oscillating zero-mean forcesdriverd is considered within the “pseudo-
linear” spiecewise-lineard model of the system. The particular case of thesymmetricalssymmetrically shapedd
rate functions is studied. To perform a rigorous analytic treatment for arbitrary strengths of the driving force we
assume that the applied ac force is quasistatically slow. Both cases of the initially static and the initially
propagating BFs are examined; various types of the “unforced” dc motion are found. We show that the
unforced transport of BF takes place in any case of the asymmetric driver, whether Maxwellian construction of
the rate function was balanced or not. In particular, progressivesacceleratedd dc drift of the initially static BFs
occurred. In contrast, both progressive and regressivesdeceleratedd types of unforced dc drift of the initially
propagating BFs take place. Moreover, reversal of the directed motion of the initially propagating BF occurred,
if the deviation of Maxwellian construction from the strictly balanced situation was relatively small; by tuning
the strength of the driving force the dc drift of BF exhibits the reversal. The symmetry properties of the
biharmonic driver are discussed. The biharmonic ac force consisting of a superposition of the fundamental
mode and its evensoddd superharmonics is an asymmetricallyssymmetricallyd oscillating one. The reversal
type of the unforced dc drift occurred only in the case of the even superharmonic “mixing,” when the
superharmonic mode of the biharmonic driver was even.
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I. INTRODUCTION

The ratchet effect, a systematic direct motion of the free
particles, stimulated by zero-mean forcessdriverd, arises in a
large class of nonlinear dissipative systems out of thermal
equilibrium. Both versions of the stochasticsnoisy driverd
and deterministicsregular driverd ratchets are possible and
have been discussed at length in Refs.f1g. A crucial feature
of the ratchet “device” is the spatial asymmetry of the sub-
strate potential. The ordinary ratchetsBrownian motor, noisy
and deterministic oned works as a particle separator in a spa-
tially periodic system that is characterized by asymmetrically
shaped potential; the unidirectional transport takes place if
the “active” particles experience the spatial asymmetry of the
substrate potential. The considered ratchet effect takes place
too even in the case of the externally induced asymmetry; the
“unforced” drift generated by “kinematical” asymmetry of
the substrate potential has been recently discussed in Ref.
f2g.

A topic currently receiving much attention is the unidirec-
tional transport of the solitary self-ordered “states”sfront-
structuresd in the nonlinear, spatially uniform systems under
the action of the deterministic or noisy zero-mean forces.
Two different mechanisms underlying the unforced motion
discussed, namely, the parametricallysexternallyd stimulated
and directly sinternallyd induced transport of the self-
localized fronts, both coherent and dissipative ones, have
been studied analytically and by numerical simulations too
ssee, e.g., the papers inf3–8gd. Recent studies carried out
with the sine-Gordon, cubic polynomial and pseudolinear

spiecewise-lineard models of the underdamped, moderately
damped and extremely overdamped systems being under the
action of the periodic zero-mean force showed that the un-
forced transport in “front-ratchets” is sensitive to the tempo-
ral symmetry of the driving forcefstd se.g., see Refs.f4–8gd.

In the present paper the unforced transport of the bistable
fronts sBFsd that separate two stable uniform states of the
bistable dissipativesextremely overdampedd system of the
reaction-diffusion type is considered. We extend our previous
study of the deterministic “front-ratchet”sDFRd presented in
f7,8g by consideration of the “asymmetrically” driven BFs
under the action of the asymmetrically oscillating zero-mean
force. The response of BF to the applied ac force is described
by the following equation,

ut − uzz− cstduz + Rsud = fstd, s1d

where the functionusz,td denotes the steplike field of the
front propagating at the moment velocitycstd, z=x−ct is the
traveling coordinate, and the rate functionRsud, which char-
acterizes the rate of the transient processes in the system, has
three zeros atu=u1,u2,u3 ssay,u1,u2,u3d. In the consid-
ered case of the bistable system one has thatR8su1,3d.0, and
R8su2d,0, where the prime denotes the derivative. The front
solution of the freesf ;0d BF u0szd joins two fixed points
sstable uniform statesd u1 andu3, namely; the following re-
lations hold: u0sz→−`d→u1, and u0sz→`d→u3. Recent
studies carried out within the cubic polynomial and pseudo-
linear models of the bistable system showed that the charac-
teristic features of the unforced transport of BFs were sensi-
tive to the symmetry properties of both the rate function and
the driving forcef7,8g. More specifically, the peculiarities of
v− fa characteristics, that describe the dependence of the drift*Email address: bakanas@pfi.lt
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smeand velocity v of BF versus the amplitudefa of the driv-
ing force, depend on the shape of both functions,Rsud and
fstd. The following combinations of the symmetry in the con-
sidered DFR have been identified:sId hRSj− fS, sII d hRAj− fS,
sIII d hRSj− fA, and sIV d hRAj− fA, where the labelsS and A
stand for the symmetrically and nonsymmetrically shaped
functions, respectively. Similarly as in the case of the ordi-
nary ratchets, zero-mean forcefSstd is treated as symmetric
scontrasymmetricd if the equality fSst+T/2d=−fSstd holds,
where byT we denote the period of the ac force. Differently,
zero-mean forcefAstd is asymmetric if the relationfAst
+T/2dÞ−fAstd holds. Quite similarly, thesymmetricaland
asymmetricalrate functions defined by the relationshRSj
ªRS

0sud+C and hRAjªRA
0sud+C satisfy the relationsRS

0su2
−Dud=−RS

0su2+Dud and RA
0su2−DudÞ−RA

0su2+Dud, where
the quantityDu denotes the free variable,C is an arbitrary
constant, and the subindex “0” means that Maxwellian con-
struction of the rate functionR0sud was strictly balanced. In
the other words, the symmetry of the associated potential,
W8sudª−Rsud, is rather different in either case of thesym-
metrical or asymmetricalrate function. Namely, the follow-
ing relations hold: WS

0su2−Dud=WS
0su2+Dud and WA

0su2

−DudÞWA
0su2+Dud, where, as previously, the labelsSandA

indicate the symmetry. Clearly, the familysan infinite setd of
the similarly shapedrate functionshRsudj, either symmetri-
cal or asymmetrical, is generated, by tuning the free constant
C. Both the free front solutions and the propagation veloci-
ties of BF that are related to the similarly shaped rate func-
tions hRsudj depend onC. In particular, the propagation ve-
locity c0 increases with the increasingC. Finally we notice
that both the cubic polynomial and the sine-type rate func-
tions, frequently used in considerations of the bistable fronts,
are symmetricalscontrasymmetrically shapedd. On the other
hand, the temporal symmetry of the biharmonic ac force,
frequently used in theoretical studies of the ordinary and
soliton “ratchets,” is flexible. Using the combinationssuper-
positiond of the odd/even harmonics one gets either sym-
metrically or asymmetrically oscillating zero-mean force
fstd.

The characteristic features of the directed drift of BFs
being under the action of the symmetrically oscillating zero-
mean force, both versions of DFR, above labeled bysId and
sII d, have already been discussed inf7,8g. In the present pa-
per we shall deal with casesIII d; the unforced drift generated
by the symmetrically shaped rate functionshRSj and the
asymmetrically oscillating zero-mean forcefA is considered.
We notice that the particular, very special case of the “asym-
metrically” driven BFs, namely, the dc drift of the initially
static BF being under action of the biharmonic ac force con-
sisting of the superposition of the fundamental mode and its
second harmonic was recently discussed in Ref.f8g.

For the sake of brevity, in what follows we shall use the
abbreviation: the bistable front under the action of the sym-
metrically sasymmetricallyd oscillating zero-mean force will
be referred to as “symmetrically”sasymmetricallyd driven
BF.

The paper is organized as follows. In Sec. II we discuss
the model and approximations. Section III deals with the
speed equation of the quasistationary driven fronts. The sym-

metry properties of the biharmonic driver are discussed in
Sec. IV. Section V deals with the unforced transport of the
asymmetrically driven BFs. Both cases of the initially static
and initially propagating fronts are considered. Finally, we
summarize the main conclusions.

II. MODEL AND APPROXIMATIONS

The analytic treatment of the ac driven BFs requires the
use of approximate approaches. The perturbative techniques
that are valid in the case of the weak driving force are of
limited use. Some interesting peculiarities of the unforced
transport of BFs may occur at relatively high strengths of the
driving force, as shown in Ref.f8g. Our principal goal is to
present the main outlines of the unforced drift generated by
the asymmetrically oscillating force of zero mean, in a wide
interval of the amplitudesfa of the driving force. Similarly as
in f7,8g, to describe the dc drift generated by the driving
forces of the arbitrary strengths, we shall use an adiabatic
squasistaticd approximation. We assume that the driving
force is slow, if compared to characteristic relaxation time in
the system. A rough criterion of the approximation used was
presented inf7,8g. It readsTf @t, where the parametert
indicates the characteristic relaxation time in the system,t
=maxhR8−1su1d ,R8−1su3dj, and the quantityTf =minhTnj de-
notes the period of the rapidly oscillating mode of the ac
force. Clearly, the periodic forcefstd may be presented as a
superposition of the harmonic modes. The adiabatic approxi-
mation is exact in the limitTf →`. The considered approxi-
mation was recently applied to consideration of the self-
ordered states spulled fronts, spiral wavesd in the
quasistationary perturbed system of the reaction-diffusion
type f9g. The response of the driven BF to the quasistatic ac
force is a rapid, almost instantaneous one, in the time scale
of the periodTf. Thus we drop the time derivative in Eq.s1d.
The governing equation reads

uzz+ cstduz − RFfu; fstdg = 0, RF = Rsud − fstd, s2d

where byRFsud we denote the modified rate function. Simi-
larly as in f8g, the “pseudolinear” model of the bistable sys-
tem is used, namely, the rate functionRsud is approximated
by the linear pieces. The considered rate function has a spe-
cial “status:” it is flexible and analytically tractable. All
above discussed versions of “front ratchets” are analytically
tractable with the considered rate function, described by the
following expressionssee Fig. 1d:

Rsud = 5 a1su − u1d, u , uM ,

− a2su − u2d, uM , u , um,

a3su − u3d, u . um.
6 s3d

Here the free parameters are defined as follows:u1,uM
,u2,um,u3 and ai .0, si =1,2,3d. The extremes of the
considered rate function,RM ;RsuMd and Rm;Rsumd, are
given by the relationRM,m=a2su2−uM,md. The front solutions
of the pseudolinear model have been presented in Refs.
f8,10g.
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III. SPEED EQUATION OF THE ac DRIVEN FRONT

The main subject of the present consideration is the
propagation velocity of the ac driven BF. Regretfully, in the
considered case of the pseudolinear rate function the explicit
expressions of the front solutions of BF inuz−u planesphase
trajectoriesd are lacking, different from the cases of the
cubic-polynomial and sine-Gordon models. As a conse-
quence, the moment velocitycstd of the quasistatically driven
BF is not expressible as the function of the free parameters
of the rate function and the driving forcefstd. More specifi-
cally, the moment velocitycstd is described by the “speed
equation” being derived by the direct solution of the govern-
ing equations2d used in conjunction with the appropriate
boundary and matching conditions. The required speed equa-
tion readsssee Ref.f8gd

Snssd
expf− wssdgsinFssd

=
hR − s1 + hRdf*

1 + s1 + hRdf* , s4ad

where the quantitysstd=cstd /cP denotes the moment veloc-
ity, scaled in the units of the “marginal” speed of the
“pushed” front,cP=2Îa2, the functionf*stdª fstd /DR stands
for the driving force, scaled in the units of the height of the
rate function DR=RM −Rm, and the rest parameterhRª

−RM /Rm indicates the ratio of the extreme values of the rate
function. The unknown functions in Eq.s4ad are described as
follows:

wssd =
sFssd
Q2ssd

, Fssd = HarctanTgssd, Tgssd . 0,

p − arctanf− Tgssdg, Tgssd , 0,
J

s4bd
Snssd = FSn/FV, Tgssd = FSn/FCn,

and the auxiliary functions are given by the expressions

FSn= Q2ssdfd1K1ssd − d3K3ssdg,

FCn = − bQ2
2ssd + G1ssdG3ssdc, s4cd

FV = Q2
2ssd + G1

2ssd, G1,3= − s+ d1,3K1,3ssd,

where

Q2ssd = Î1 − s2, K1,3ssd = − s± Îr1,3+ s2. s4dd

Here and in the following we use the denotationr1,3
;1/d1,3=a1,3/a2. Without loss of generality, the following
boundary conditions have been used in the derivation of
speed equations4ad: usz,td→v1std if z→−`, and usz,td
→v3std if z→`, where the time-dependent quantitiesv1,3

=u1,3+a1,3fstd denote zeros of the modified rate functionRF.
Consequently, the free front solutionu0szd satisfies the
boundary conditionsu0szd→u1 if z→−`, andu0szd→u3 if
z→`. The propagation velocity of the free BFs0 is de-
scribed as follows:s0.0 if S.0 ands0,0 if S,0, where
the quantitySdenotes the area enclosed byR−u dependence
in the intervalfu1,u3g of the variableu. The presented in-
equalities show that the penetrated state of the free BF isu3
if the Maxwellian construction of the rate function is “posi-
tively” unbalancedsS.0d, and differently, the penetrated
state isu1 if S,0. From Eq.s4ad, in conjunction with Eqs.
s4bd–s4dd, it follows thatsstd=sfr1,r3,hR; f*stdg. Whence, the
drift velocity of the driven BF,vª ksstdl, is a function of the
slope parametersr1,3 and the relative height of the rate func-
tion hR, but not a function of the absolute values of the slope
coefficientshaij and the heightsRM andRm, if the velocity of
the driven BF was taken in the scaled units. Here the bracket
k¯l denotes the averaging over the period of the driving
force. In what follows we shall use the scaled units.

As noted, we shall deal with the similarly shaped rate
functions defined in above. The Maxwellian construction of
the rate functions3d is strictly balanced, i.e., the initialsfreed
BF is staticsmotionlessd if one takes thathR=h0ª−RM

0 /Rm
0 ,

where the quantitiesRM
0 andRm

0 denote the extreme values of
the “balanced,” “globally” symmetric rate function, which
satisfies the conditionS=0. The ratio of the extreme values
of the considered rate function,RM

0 andRm
0 , is given by the

expressionh0=Îs1+d3d / s1+d1d. Using the balance factorgH

defined by the relationgHªhR/h0 we get thats0=0 if gH
=1, i.e., the free BF is always static if the balance factor
equals unity. Using the balance factorgH we get thatsstd
=sfr1,r3,gH ; f*stdg. Thus, the governing parameters that in-
fluence on the directed drift of BF are as follows, both the
balance factorgH and the slope parametersr1,3 of the rate
function, and the driving forcef*std, scaled in the units of the
height DR. Clearly, the propagation velocity of the initial
sfreed BF, s0sgH ,r1,r3d, is a function of the balance factorgH

and the slope parametersr1,3. Consequently, by tuning the
factorgH we arrive at the family of the similarly shaped rate
functions, if the slope parametersr1,3 were kept fixed. The
relevant cases of the similarly shaped functionss3d may be
typified as follows:

gH ù 1, or s0 ù 0, s5ad

gH ø 1, or s0 ø 0. s5bd

The moment velocitysstd satisfies some symmetry properties
previously discussed in Ref.f8g. In particular, it was shown
in f8g that

FIG. 1. The pseudolinear rate function and its associated poten-
tial, W8sudª−Rsud.
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sfr1,r3,gH; f*stdg = − sfr3,r1,1/gH;− f*stdg. s6d

Whence, both families of the “positively” and “negatively”
unbalanced rate functions, described the relationss5ad and
s5bd, may be treated as completely equivalent ones. Turning
back to the case of the symmetrical rate functionshRSj we
notice that the outer slope coefficients are equal, thus, we set
a1=a3 throughout this paper. Now it follows that the gov-
erning parameters of the unforced drift are the balance factor
gH, the slope parameterrªa1,3/a2, and the driving force
f*std. The slope parameterr is a function of both the middle
slope coefficienta2 and the outers ones,a1,3. Thus the aver-
age characteristics of the driven BFs may be governed in two
ways: by tuning the middle slope coefficient and the outer.

Speed equations4ad is transcendental, thus, the numerical
simulations have been used to derive the needed characteris-
tics of the driven BFs. In the present paper we shall deal with
the biharmonic ac force that is described by a superposition
of two harmonic modes. Let us discuss briefly the peculiari-
ties of the biharmonic driver.

IV. BIHARMONIC DRIVER

The temporal symmetry of the driving force plays a very
important role in considerations of the unforced drift, espe-
cially in the case of the “additive”snonparametricd driving.
The asymmetrically oscillating ac force of zero-mean may
serve as a basic “impetus” for the unforced transport gener-
ated in the ordinary ratchets and ratchetlike systems perform-
ing the unidirectional drift of the self-ordered structures in
the spatially uniform media. The biharmonic force described
by a superposition of the fundamental mode and its second
harmonic is frequently used in theoretical studies of the or-
dinary and “solitonic” ratchetsse.g., see Refs.f1,5,6gd. Fur-
thermore, recent studies carried out within the cubic polyno-
mial and the pseudolinear models of the bistable system
showed that the average characteristics of BFs that were
driven by the symmetrically and asymmetrically oscillating
zero-mean forces are rather differentssee Refs.f7,8gd. For
instance, the unforced drift of BF being under the action of a
single-harmonicssymmetrically oscillatingd ac force disap-
peared if the rate function was rigorously symmetric, namely,
if the relationRsu2−Dud=−Rsu2+Dud was fulfilled f7g. Dif-
ferently, the progressivesacceleratedd dc drift of BF that was
driven by the biharmonicsasymmetrically oscillatingd ac
force occurredf8g.

Zero-mean force, symmetric and asymmetric one, may be
presented by a superposition of the harmonic modes. For
simplicity’s sake we shall deal with the biharmonic force
described by the superposition of the fundamental mode and
its nth superharmonic,

fstd = f0hsinfsvt − w0dg + bF sinfnsvt − w0d + Dwgj. s7d

Here the quantityf0 denotes the amplitude of the fundamen-
tal mode, the parameterbF stands for the relative strength of
the superharmonic mode, and the quantitiesDw and w0
=vt0 indicate the relative and initial phase, respectively. To
avoid the confusion we notice that the othersmodifiedd defi-
nition of the relative phase, namely,DFªDw−sn−1dw0, is

frequently used in considerations of “soliton-ratchets”se.g.,
see Refs.f5,6gd. The following relation holds: sinfnsvt
−w0d+Dwg;sinsnvt−w0+DFd. Whence, both discussed pa-
rameters,Dw and DF, are completely equivalent. In what
follows we shall useDw instead ofDF. Further, in the con-
sidered case of the dissipativesextremely overdampedd sys-
tem the average characteristics of the driven BFs are inde-
pendent on the initial conditions, i.e., they do not depend on
the initial momentt0 ssee Refs.f7,8gd. Thus, we assume in
what follows thatw0=0.

As noted, both cases of the symmetric and asymmetric
driver may be presented by the biharmonic function. The
degree of the asymmetry of zero-mean force may be evalu-
ated by use of the asymmetry factorgF defined by the rela-
tion gFª sfM + fmd / sfM − fmd, where the quantitiesfM .0 and
fm,0 denote the maximal deviationss“amplitudes”d of the
driving force. Clearly, a rough estimate of the asymmetry is
given by use of the factorgF; in general, both the “degree” of
the asymmetry of the driving force and the peculiarities of
the unforced drift depend on the shape off − t dependence
too. Let us turn to the symmetry properties of the biharmonic
driver s7d.

The odd harmonic mixing sn=2m+1, where m
=1,2,3, . . .d describes the rigorously symmetric driver,
whereas the other case of the evenn’s stands for asymmetric
one. The obvious relation holds: sinfs2m+1dsw+pd+Dwg
=−sinfs2m+1dw+Dwg. Whence, the contrasymmetricity re-
lation fst+T/2d=−fstd is satisfied in any case of the odd
mixing. Evidently, in the considered case of the oddn’s one
has that gF=0, quite similar to the case of the single-
harmonic force. Differently, the temporal symmetry of the
biharmonic force that involves even the superharmonic mode
seven n’sd depends on both the relative phaseDw and the
factor n. More exactly, the asymmetry factorgFsDwd is the
periodic function ofDw, with the magnitude of the oscilla-
tions being decreased with increasingn ssee Fig. 2d. The
following relation holds:gF→0 if n→`. Furthermore, the
asymmetry factorgF tends to zero ifDw→mp. The given
relation implies that the biharmonic ac force with even
super-harmonic mixing is rigorously contrasymmetric,
namely, the relationfst− tNd=−fstN− td holds if the relative
phase satisfies the equalityDw=p ,2p ,3p , . . . . Here by tN

FIG. 2. The dependence of the asymmetry factor of the bihar-
monic force versus the relative phaseDw. Parameter values are
bF=1/2; scurve 1d n=2; scurve 2d n=4; scurve 3d n=6.
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we denote zero-point of the biharmonic functions7d. The
presented relationfst− tNd=−fstN− td stands for another crite-
rion of the “rigorously” symmetric driver. Generally speak-
ing, the contra-symmetry of the ac force implies that one of
the following relations: eithersad fst+T/2d=−fstd or sbd fst
− tNd=−fstN− td is satisfiedssee Fig. 3d. Both given criteria of
the temporal symmetry are almost equivalent; thev− fa char-
acteristics of the “symmetrically” driven BFs are quite simi-
lar in both cases discussedssee below, Fig. 5d. It should be
noted that the single-harmonic function, which describes the
ac driver is of the “highest” symmetry, satisfies both the
“translational-invariance” conditionsad and the “inverse-
symmetry” swith respect to zero-pointtNd propertysbd.

Turning back to the case of the evenn’s we notice that the
periodicity of the asymmetry factorgFsDwd implies that both
intervals f0,pg and fp ,2pg of the variableDw are com-
pletely equivalent. Namely, the following relations hold:
AFsDwd=1/AFs2p−Dwd and AFsDwd=1/AFsp+Dwd, where
the quantityAFª−fM / fm denotes the ratio of the amplitudes.
Further, the biharmonic driver consisting of the superposition
of the fundamental mode and its second harmonic is of the
highest asymmetry. The maximal asymmetry factorgF is
achieved by takingn=2 andDw=p /2 sor equivalently,Dw
=3p /2d. For the considered case of the highest asymmetry
the dependence of the asymmetry factor versus the relative
amplitudebF is described by the following expressions:

gF =
AF − 1

AF + 1
, AF =

bF
2 + 1/8

bFs1 + bFd
. s8d

From Eq.s8d it follows that the extreme, absolutely maximal
asymmetry of the biharmonic driver is achieved by taking
bF=1/2. Namely, one has thatgF=−1/3 andAF=1/2, by
taking Dw=p /2. Quite similar, in the other case of the “op-
posite” asymmetry, defined by the relationDw=3p /2, one
gets thatgF=1/3 andAF=2. Finally, the dependence of the
asymmetry factor versus the relative amplitudebF is non-
monotone. For instance, one gets thatgFsbF=1d=7/25 and
gFsbF=1/4d=1/4, by taking n=2, andDw=p /2.

We conclude by noting that the asymmetry of the bihar-
monic force is relatively low; the maximal ratio of the am-

plitudes fM and ufmu does not exceed the value 2. Moreover,
the asymmetry factor decreases very rapidly with the increas-
ing n, as shown in Fig. 2. For instance, for the “highest”
asymmetry case, given by the relationsDw=p /2 and bF
=1/2, onegets thatgFsn=2d=−1/3, gFsn=4d<0.1, gFsn
=6d<−0.04, etc. The additional extra-modes should be in-
cluded into expressions7d to achieve the higher asymmetries
of the driving force. Nevertheless, the analytic treatment of
the directed drift generated by the multiharmonic force
seems to be complicated. Similarly as in Refs.f7,8g, to
achieve the needed asymmetries of the driving force we have
used the square-pulse “approximation” described by expres-
sion ssee Fig. 4d

fstd = H fM , nT, t , nT+ TM ,

fm, nT+ TM , t , sn + 1dT.
J s9d

As previously, the quantitiesfM and fm denote the amplitudes
and the variable parametersTM and Tm indicate the “half-
periods” of the driving force, namely, one has thatT=TM
+Tm. To satisfy zero-mean condition we demand that
Tm/TM =AF, where byAF we denote the ratio of the ampli-
tudes,AF=−fM / fm. The asymmetry of the square-wave func-
tion s9d is arbitrary: by tuning the free parametersTM andTm
within the intervals0,`d one gets 0,AF,`, or differently,
−1,gF,1.

The strength of the asymmetric driver depends on the am-
plitudessmaximal deviationsd fM and fm. When considering
v− fa characteristics we shall use the average amplitudefa
ª sfM − fmd /2, which indicates the “effective” strength of the
driving force. Further, in what follows we shall deal with the
similarly shapedfunctions fstd; the ratio of the amplitudes
fM and fm will be kept fixed, when the strength of the driving
force is changed. Thev− fa characteristics presented below
have been derived using the similarly shaped functionsfstd.
Turning back to the biharmonic driver we notice that the
strength of the biharmonic ac force depends on the param-
etersf0, bF, Dw, and the integern. By tuning the amplitude
of the fundamental modef0 one arrives to the family of the
similarly shaped functionshfst ; f0dj, if the rest parameters are
kept fixed ssee Fig. 4d. Once again, both the ratio of the

FIG. 3. Temporal symmetry of the biharmonic driver. Two kinds
of the contrasymmetric functionsfstd are shown by curvessAd and
sBd. The parameter values aregF=0, bF=1; scurve Ad n=3, Dw
=p /2; scurveBd n=2, Dw=p. Arrows show the symmetry.

FIG. 4. Similarly shaped functionsfstd; the parameter values are
n=2, bF=1/2, Dw=p /2; AF=1/2, gF=−1/3. The square-pulse ap-
proximations9d is shown by curvesad.
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amplitudesAF and the asymmetry factorgF are fixed within
the considered family of the similarly shaped functions. Let
us turn to the driven BFs, let us discuss the characteristic
features of the unforced drift generated by the asymmetric
driver.

V. UNIDIRECTIONAL DRIFT INDUCED BY
ASYMMETRICALLY OSCILLATING ZERO-MEAN FORCE

The unforced dc drift of BF takes place if either the rate
function or the driving force breaks the symmetries dis-
cussed above. The considered dc drift disappears if both the
rate function and the driving force are rigorously symmetric,
namely, if the “contrasymmetry” conditionRsu2−Dud
=−Rsu2+Dud and the temporal symmetry relation, either
fst+T/2d=−fstd or fst− tNd=−fstN− td, are satisfied. In the
present paper we shall deal with the case of the broken sym-
metry above labeled byRS− fA. The particular case of the
asymmetrically oscillating zero-mean force and thesym-
metrical rate functionshRSj is considered, thus, we take that
r1=r3; r.

The strength of the driving force, the maximal amplitude,
either fM or fm, cannot exceed the extreme value of the rate
function, eitherRM or Rm, respectively. The middle zero-
point v2 of the modified rate functionRF and the outer, either
v1 or v3, closely approach to each other if the amplitude of
the similarly shaped functionfstd tends to the critical value,
either RM or Rm. The criteria of the global stability of the
driven BF read,fM ,RM and ufmu, uRmu. Otherwise, using
the scaled unities we demand thatfM

* , s1+hRd−1 and ufm
* u

,hRs1+hRd−1.
Before discussing the peculiarities of the directed drift

generated by the asymmetrically oscillating zero-mean force
let us touch briefly on the dc drift induced by the rigorously
symmetric driver. As noted, two kinds of the “rigorously”
symmetric functionsfstd exist. Furthermore, the biharmonic
driver with the odd harmonic mixing is strictly symmetric, in
any case. At last, the biharmonic function consisting of a
superposition of the fundamental mode and its even super-
harmonic is “rigorously” symmetric too, if the relative phase
was taken asDw=mp. We already noted that the character-
istic features of the unforced drift generated by the rigor-
ously symmetric driver are quite similar, no matter what kind
of the “rigorous” symmetry, eitherfst+T/2d=−fstd or/and
fstN− td=−fstN+ td, was satisfied. The typicalv− fa character-
istics of the symmetrically driven BFs, followed from speed
equations4ad, are shown in Fig. 5. All above discussed ver-
sions of the symmetric driver are presented. These aresad a
single-harmonic forcescurve 1d, sbd the biharmonic force
with the odd harmonic mixingscurves 2, 2a and 3d, andscd
the biharmonic force with the even superharmonic mixing
sthe particular case of the superharmonic mode,n=2 and
Dw=pd scurve bd. It is easy to see that the presentedv− fa
characteristics are very similar to those given in the case of
the single-harmonic forcessee also Refs.f7,8gd. The progres-
sive sacceleratedd dc drift of the initially propagatingss0

Þ0d BFs was occurred, namely, the magnitude of drift ve-
locity uvu monotonically increases with the increasing ampli-

tude fa. More specifically, the unforced drift, the shift of the
mean velocity of BF takes place if the Maxwellian construc-
tion of the rate functionRsud is unbalanced, i.e., if the bal-
ance factorgH satisfies the inequalitygHÞ1. Differently, the
motionless BF, which stays initially at rest, cannot gain the
dc motion discussed, in each case of the symmetric driver,
regardless to the peculiarities off − t dependencessee the
straight thick line in figured. Thus we conclude that the di-
rected drift disappears if both the rate function and the ac
driver are rigorously symmetric, namely, if the equalities
Rsu2−Dud=Rsu2+Dud and, either fst+T/2d=−fstd or/and
fstN− td=−fstN+ td, are fulfilled. This conclusion was sup-
ported by our direct calculations that have been performed
using various “combinations” of the symmetrically oscillat-
ing forces7d. It is interesting to note that a similar result was
recently obtained in the case of the topological soliton that
was driven by biharmonic ac forces7d; the directed motion
of the sine-Gordon kink being under the action of the bihar-
monic force consisting of the superposition of the fundamen-
tal mode and its third superharmonicsn=3d disappearedssee
Ref. f5gd. Clearly, the “rate function”snonlinearityd of sine-
Gordon equation is rigorously symmetric.

In continuing the discussion of the symmetrically driven
BFs we emphasize that the consideredv− fa dependencies
are very close to each other in any case of the “odd mixing”
sn=3,5,7,9, . . .d, if the rest parameters of both the driving
force sf0, bF, andDwd and the rate functionsr andgHd were
taken fixed. Broadly speaking, the relative deviationDv /vMx
does not exceed the few percent if one takes thatn.5,
where byDv we denote the maximal deviation of the drift
velocity and the quantityvMxªvsfMxd indicates the drift ve-
locity taken at the maximal driving force. The steepness of
v− fa characteristics depends on the slope parameterr. The
considered characteristics become more and more flattened if

FIG. 5. The dependence of the drift velocitysarbitrary unitsd of
the symmetrically driven BF versus the amplitudefa. The driving
forces arescurve 1d the single-harmonic force,n=1; scurves 2, 2a,
and 3d the case of the odd harmonic mixing:n=3 andn=5, respec-
tively; scurve bd the case of the even superharmonic:n=2 and
Dw=p. The parameter values arer =0.2, gF=0; scurves 1, 2, 3,bd
gH=1.1; scurve 2ad gHs2ad;1/gHs2d<0.91. Other parameter val-
ues arescurves 2, 2a, 3d bF=0.5,Dw=p /2; scurvebd bF=0.5. The
contra-symmetric curvess2d ands2ad illustrate the symmetry prop-
erty s6d.
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the slope parameterr increases, quite similar as in the other
case of the asymmetrically shaped rate functionshRAj ssee
Ref. f8gd. The “size” of the driving effect, the maximal drift
velocity vMx of the symmetrically driven BF depends on the
relative phaseDw that governs the shape off − t dependence.
The dependence of the maximal drift velocity versus the
relative phase is shown on Fig. 6. The presentedvMx−Dw
dependencies show that the maximal drift velocityvMx is the
periodic function ofDw, with the amplitude of the oscilla-
tions decreasing with the increasingn. The considered de-
pendencies become very flattened if the integern is large
enough, namely, if the relationn=2sm+1d@1 was satisfied
ssee curve c in figured. Hence, the “efficiency” of the rigor-
ously symmetric driver satisfying the relationn@1 is nearly
constant, i.e., it does not depend on the frequency of the
“supermode” swithin the quasistatic approximation usedd.
Referring to the other case of the nearly symmetric driver,
defined by the relationsn=2m@1 andgF!1, we note that
v− fa characteristics of the “almost” symmetrically driven
BFs are very similar to those given in the case of the rigor-
ously symmetric driver. Small deviations between two dis-
cussed types ofv− fa characteristics occur only in the limit-
ing region of the high strengths of the driving force, when
the amplitudefa approaches to the critical valuefMx ssee
below, Fig. 7d. The considered deviation vanishes in the limit
n→`. Roughly speaking, all biharmonic drivers satisfying
the relationn@1 may be treated as symmetric ones, no mat-
ter what superharmonic mode, odd or even, was involved.

In closing the discussion of the symmetrically driven BFs
we summarize that the progressivesacceleratedd dc drift is
generated by the symmetrically oscillating force if the rate
function is symmetricaland “unbalanced,” i.e., if Maxwell-
ian construction of the rate function was not balanced. The
unforced dc drift disappears if both the rate function and the
driving force are rigorously symmetric, namely, if the fol-
lowing relations hold:sad Rsu2−Dud=Rsu2+Dud and sbd
fst+T/2d=−fstd or/and fst− tNd=−fstN− td. The considered
dc drift is more pronounced, namely,v− fa characteristics of
are more rapid if the slope parameterr is lesser; the steep-
ness of the characteristics increases if the innersouterd slope
coefficient of the rate function increasessdecreasesd.

The main conclusions concerning the discussed case of
the directed drift have been confirmed by our direct calcula-
tions that have been performed by use the cubic polynomial
ssymmetricald rate functions RK=asu−w1dsu−w2dsu−w3d
+C satisfying the relationw3−w2=w2−w1.0. It is interest-
ing to note thatv− fa dependencies given in both cases of the
cubic polynomial and pseudolinear rate functions are very
close to each other if the slope coefficients of pseudolinear
function s3d are taken in accordance with the relationai
=RK8 swid sclearly, both the drift velocityv and the amplitude
fa should be taken is the scaled units defined aboved. The
peculiarities of the directed drift generated by the rigorously
symmetric driver and thesymmetricalrate functionsRSsud
will be discussed more inclusively elsewhere. Let us turn to
the other case of the evenn’s; let us discuss the unforced
drift of the asymmetrically driven BFs.

As noted, the asymmetry of the biharmonic driver consist-
ing of a superposition of the fundamental mode and its even
superharmonics depends on both the relative phaseDw and
the integern, which indicates the frequency of the even
mode. The asymmetry factorgF decreases very rapidly with
the increasingn; the asymmetry factorgF does not exceed
the value of few tenths if one takes thatn=2m.4 ssee Fig.
2d. As discussed, the average characteristics of BFs being
under the action of the biharmonic force consisting of a su-
perposition of the fundamental mode and its higher superhar-
monics are quite similar to those given in the case of the
rigorously symmetric driver. Thev− fa characteristics shown
in Fig. 7 illustrate the dependence of the “size” of the driving
effect versus the frequencysintegernd of the even superhar-
monic mode. The particular case of the rigorously symmetric
rate functionRsu2−Dud=Rsu2+Dud is presented. The given
characteristics demonstrate that the progressive dc drift of
the initially static BFs being under the action of the asym-
metrically oscillating zero-mean force takes place. As ex-
pected, the “size” of the driving effect decreases very rapidly
with the increasingn; the v− fa dependencies become more
and more flattened if the frequency of the superharmonic

FIG. 6. The dependence of the maximal drift velocitysarbitrary
unitsd of the symmetrically driven BF versus the relative phaseDw.
The parameter values arer =0.2,gH=5/4; gF=0, bF=0.5; scurvead
n=3, scurvebd n=5, scurvecd n=7.

FIG. 7. The dependence of the drift velocitysarbitrary unitsd of
the asymmetrically driven BF versus the amplitudefa. The param-
eter values arescurves 1 and 1ad n=2; scurves 2, 3d n=2,6,respec-
tively. The other parameter values arer =0.2, gH=1, bF=0.5;
scurves 1 and 3d Dw=p /2; scurves 2 and 1ad Dw=3p /2. The asym-
metry factors arescurve 1d gF=−1/3; scurve 2d gF<−0.1;scurve 3d
gF<−0.04; scurve 1ad gF=1/3.
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mode increasesscompare curves 1, 2, and 3d. The presented
dependencies evidently show that the maximal driving effect
is achieved with the highest asymmetry force defined by the
relationsn=2, bF=1/2 andDw=sm+1/2dp ssee curves 1
and 1ad. The considered characteristics that are related to the
higher super-modesn.4 are very flattened; the dc drift is
practically disappeared in the whole interval of the ampli-
tudes fa, except the narrow interval lying in the vicinity of
the extreme amplitudes,fa> fMx ssee curve 3 in Fig. 7d. At
last, the propagation direction of the asymmetrically driven
BF that is described by the rigorously symmetric rate func-
tion depends on the sign of the asymmetry factorgF. The
following relations hold:v.0 if gF,0 andv,0 if gF.0.
The presented inequalities imply that the modified Maxwell-
ian rule holds:v.0 if Sa.0 andv,0 if Sa,0, where bySa
we denote the total area enclosed by the rate functionRa
;Rsud− fa. Clearly, the given inequalities are in agreement
with the symmetry relationssr ,gH ; f*d=−ssr ,1 /gH ;−f*d fol-
lowed directly from Eq.s6d scompare curves 1 and 1ad.

It should be noted that the progressive dc drift of the
initially static BF takes place too in the other case of the
“opposite” RA− fS symmetry, discussed in Ref.f8g. More-
over, the progressive dc drift generated in the case of the
“opposite” symmetry satisfies the relationsv.0 if hR.1
and v,0 if hR,1. To draw some closer parallels between
two discussed cases of the asymmetry, labeled byRS− fA and
RA− fS, we introduce the factorkFRªAF /hR, which indicates
the ratio of “asymmetries” of both the driving force and the
rate function. The obvious relations hold:AF.hR if kFR.1
andAF,hR if kFR,1. Now, the “modified rule” that encom-
passes both cases discussed readsv,0 if kFR.1 andv.0
if kFR,1. The unforced drift generated by the balanced rate
function, eithersymmetricalsRSd or asymmetricalsRAd, is
always directed toward the stabile stateu1 if the inequality
kFR.1 holds, and differently, the penetrated state of the ini-
tially static BF is u3 if kFR,1. Clearly, the limiting case
given by the relationkFR=1 stands for the “totally” symmet-
ric DFR, labeled byRS− fS. Both the rate function and the
driving force are rigorously symmetric in such a case; thus
one getsv=0, in accordance with the “modified rule.” Thus
we conclude the asymmetric driving plays a quite similar
role as the asymmetry of the rate function; the characteristic
features of the directed drift generated in both cases of the
“opposite” asymmetry are quite similar.

Turning back to the unforced drift of the asymmetrically
driven BF, generated by the rigorously symmetric rate func-
tion, Rsu2−Dud=Rsu2+Dud, we note that the “size” of the
driving effect, the maximal drift velocityvMx, which indi-
cates the steepness ofv− fa characteristics, depends on both
the slope parameterr and the relative phaseDw. The depen-
dence of the maximal drift velocity versus the relative phase
is shown in Fig. 8, for the different values of the integern.
As expected, the maximal drift velocity is periodic function
of Dw, in accordance withgF−Dw dependence discussed
abovessee Fig. 2d. The “stopping” pointsSshown by arrows
on Fig. 8 satisfy the relationvMxsDwSd=0. The following
relation holds:DwS;mp. As discussed, the biharmonic ac
force with the “even mixing” is rigorously symmetricsgF

=0d if one takes thatDw=DwS. Thus, the directed drift will

disappear at any strength of the driving force if one takes that
Dw=DwS. Further, the maximal drift velocity decreases very
rapidly with the increasingn, as shown by curves 1, 2, and 3;
the dc drift practically disappears if one takes thatn.4.
Furthermore, the presented curves 1 and 1a confirm our pre-
vious conclusion: the maximal driving effect is achieved
with the highest asymmetry force satisfying the relationsn
=2 and Dw=sm+1/2dp. At last, gF−Dw dependencies
shown by curves 1 and 1a evidently show that the driving
effect is more strongly pronounced at the lesser value of the
slope parameterr. Whence,v− fa characteristics taken at the
larger ssmallerd value of the innersouterd of the slope coef-
ficient ai will be steeper.

We already noted that the asymmetry of the biharmonic
force is relatively low; more exactly, the following relations
are satisfied: −1/3,gF,1/3 and 0.5,AF,2. Differently,
the asymmetry of the square-pulse functions9d is flexible;
the following relations hold: −1,gF,1 and 0,AF,`.
Moreover, the size of the driving effect depends on the shape
of f − t dependence. The maximal driving effect is achieved
with the periodic functionsfstd that are characterized by the
flattened profiles in the vicinity of the maximal deviations
samplitudesd fM and fm ssee Refs.f7,8gd. Thus the periodi-
cally oscillating square-pulse driver of zero-mean seems to
be more “effective,” if compared to a biharmonic one. The
“efficiency” of both drivers, described by the biharmonic and
the square-wave functions, is demonstrated byvMx−gF de-
pendencies shown in Fig. 9. The presentedvMx−gF depen-
dence shown by curvea corresponds to the biharmonic
driver of the highest asymmetrysgF=1/3d. As expected, the
efficiency of the square-pulse force is much more higher. The
ratio of the maximal drift velocitiesvMx taken at the ex-
tremes of both curvessbd andsad approximately equals 4. In
addition, both curvessbd and sad are contrasymmetrically
shaped ones, namely, the relationvMxs−gFd=−vMxsgFd holds,
in agreement with the symmetry relations6d. Nevertheless,
the character of the considered dependences is rather differ-
ent; vMx−g f dependence shown by curveb is nonmonotone,
in contrast to that given by curvea. The extremesabsolutely
maximald value of the velocityvMx is achieved with the
square-pulse function of the “optimal” asymmetry described
by the relationgF=g7< 70.2. We emphasize, that the “op-

FIG. 8. The dependence of the maximal drift velocitysarbitrary
unitsd of the initially static BF versus the relative phaseDw. The
parameter values aregH=1, bF=0.5; scurves 1, 2, 3d n=2,4,6,
respectively, andr =1; scurve 1ad r =0.1 andn=2.
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timal” values of the asymmetry factor,g− and g+, do not
depend of the slope parameterr. Differently, the maximal
drift velocity, namely, the magnitudeuvMxsg7du, taken at the
“optimal” asymmetry of the ac force increases with the de-
creasingr. As noted, thevMx−gF dependence related to the
biharmonic forcescurvead is monotone; the maximal driving
effect is achieved with the highest asymmetry force satisfy-
ing the relationugFu=1/3.

In closing the discussion of the unforced drift generated
by the rigorously symmetric rate functions,Rsu2−Dud
=Rsu2+Dud, we conclude that the progressive dc drift of the
asymmetrically driven BFs occurred. The size of the driving
effect, and the shift of the mean velocity of the ac driven BF
depends on both the slope parameterr of the rate function
and the asymmetry factorgF that characterizes the asymme-
try of the driving force. The drift velocitysmagnituded of the
unforced drift of BF increases with the decreasing slope pa-
rameterr. The maximal driving effect of BF being under the
action the biharmonic ac force consisting of a superposition
of the fundamental mode and its even superharmonic is
achieved with the highest asymmetry ac force satisfying the
relationsn=2, bF=1/2 andDw=sm+1/2dp. The increase of
the frequency of the even super-harmonic mode shrinks the
driving effect, i.e., the drift velocity of BF decreases with the
increasingn. Finally, the size of the driving effect depends
on the peculiarities off − t dependence. The unforced drift of
BF, generated by the square-pulse ac force is much more
strongly pronounced, if compared to that given in the case of
the biharmonic ac force. The drift velocity of BF being under
the action of the square-pulse driving is a nonmonotonic
function of the asymmetry factorgF; the “optimal” asymme-
try of the considered zero-mean force, which induces the
maximal driving effect, exists. The maximal driving effect is
achieved if the asymmetry factor, the square-pulse driver,
was taken as follows:gF< 70.2.

Let us turn to the other case of the initially propagating
BFs being under the action of the asymmetrically oscillating
zero-mean force. Differently as in the previous case of the
“globally” symmetric rate function, the Maxwellian con-

struction of the rate function is not balanced in this case,
namely, the inequalitieshRÞh0 andgHÞ1 hold. As earlier,
we shall deal with the symmetrically shaped rate functions
hRSj.

From Eq.s6d it follows that the dc drift generated by the
similarly shaped rate functions satisfy the symmetries

vsr,gH;gF, fad = − vsr,1/gH;− gF, fad, s6ad

vsr,gH;kFR, fad = − vsr,1/gH;1/kFR, fad, s6bd

if one keeps in mind that the two contrasymmetric forces of
the opposite asymmetry satisfy the relationfst ;gF , fad
=−fst ;−gF , fad. The presented equalitiess6ad and s6bd show
that the dc drift generated in both cases of the “positively”
sgH.1d and “negatively”sgH,1d unbalanced rate functions
is corelated. More specifically,v− fa characteristics gener-
ated by two “oppositely” unbalanced rate functions,
RIsu; r ,gHd and RIIsu; r ,1 /gHd, will be contrasymmetrically
shaped ones, if the driving forces were taken contrasymmet-
ric ones, namely, if the relationf Ist ;gF , fad=−f IIst ;−gF , fad
was satisfiedssee Fig. 11 belowd.

Keeping in mind symmetry relationss6ad ands6bd, let us
begin with directed drift induced by the ac force of the
“negative” asymmetry, defined by the relationgF,0. The
case of the opposite asymmetry,gF.0, will be discussed
below ssee Fig. 11d. As noted, the asymmetry of the bihar-
monic force is low. Differently, the asymmetry of the ac
square-wave functions9d is flexible. The periodic square-
pulse force of zero-mean will provide us with a generic pic-
ture of the unforced drift generated by the driving force of
the arbitrary asymmetry. The typicalv− fa characteristics of
the initially propagating BFs that are driven by the asymmet-
ric square-pulse force of the negative asymmetrysgF,0d are
presented in Fig. 10, for a wide interval of the balance fac-
tors gH. As previously,v− fa dependencies shown in Fig. 10
are quite similar to those given in the case of the opposite

FIG. 9. The dependence of the maximal drift velocitysarbitrary
unitsd of the initially static BF versus the asymmetry factorgF. The
driving forces are square-pulse forces9d scurve bd; biharmonic
force s7d scurve ad. The parameter values aregH=1, r =0.2, and
bF=0.5. Two cases of the “opposite” asymmetry of the biharmonic
force,gF,0 andgF.0, correspond to the different intervals of the
relative phaseDw : f0,pg and fp ,2pg, respectively.

FIG. 10. The dependence of the drift velocitysarbitrary unitsd of
the asymmetrically driven BF versus the amplitudefa. The param-
eter values arer =0.1,AF=0.7, andgF<−0.18; curvess1, A, 2, 3, 4,
B, 5d gH<1.40,1.0,0.80,0.75,0.73,0.70,0.55, respectively;scurve
Bd kFR=1.
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symmetryRA− fS ssee Ref.f8gd. The characteristic features of
the unforced drift generated in both cases of the DFR satis-
fying the symmetriesRS− fA andRA− fS practically coincide
ssee Fig. 3 in Ref.f8gd. It is easy to see thatv− fa dependen-
cies shown in Fig. 10 confirm our previous conclusion: both
the asymmetric driver and theasymmetricalsasymmetrically
shapedd rate function play quite similar role. More specifi-
cally, two families of the differently shapedv− fa character-
istics, monotone and nonmonotone ones, shown in the figure
are separated by the “marginal” curves A and B satisfying the
relationsgH=1 sor differently, kFR=AFd and gH=AF sother-
wise,kFR=1d. Both of these are related to the different types
of the unforced migration. More exactly, monotone curves 1
and 5 satisfying the relationssad dv /dfa.0 andsbd dv /dfa
,0, respectively, show that the progressive dc drift of BF
takes place. Namely, the magnitude of the drift velocitysthe
absolute value,uvud of BF is monotonically increasing func-
tion of the amplitudefa. Both discussed kinds ofv− fa de-
pendencies that describe the progressive drift satisfy the re-
lationssad gH.1 sshown by curve 1d andsbd gH,AF sshown
by curve 5d. Referring to the other case of the negative asym-
metry, gF.0, we notice that the progressive type of the di-
rected motion satisfies the reciprocal inequalities, namely,
gH,1 andgH.AF, in accordance with symmetry relations
s6ad and s6bd. As noted,v− fa dependencies generated in
both discussed cases of the opposite asymmetry,gF,0 and
gF.0, are contra-symmetrically shaped onesssee below
Fig. 11d.

The intermediate characteristicssshown by curves 2, 3,
and 4 in Fig. 10d that are located in-between the limiting
curves A and B satisfy the relationAF,gH,1. Similarly as
in the case of the “opposite” symmetryRA− fS, different
types of “nonprogressive” drift were occurred. These are as
follows: the reversal type of the directed driftscurve 2d, the
stopping of the initially propagating BFscurve 3d, and the
“regressively-progressive” motion shown by nonmonotonic

curve 4. Quite similar to the case ofRA− fS symmetry, both
the stopping of the initially propagating front, that is driven
at the maximal driving force, and the reversal of the directed
motion of BF take place. The wideness of the intermediate
region, the interval of the balance factorsDgH corresponding
to the intermediate characteristics of “nonprogressive” type
depends on the asymmetry of the driving force. The follow-
ing relation holds:DgH=AF−1. More exactly, the balance
factors gH of the rate functions that generate “nonprogres-
sive” drift are described as follows:gHP s1,DgHd. The fol-
lowing relations hold:DgH.0 if gF.0 andDgH,0 if gF
,0. Thus it follows thatDgH→0 if gF→0; the intermediate
region vanishes in the limiting case of the rigorously sym-
metric driver. More specifically, the intermediatev− fa char-
acteristics become more and more flattened if the asymmetry
factor tends to zero. This conclusion is in good agreement
with our previous result discussed above: nonprogressive dc
drift was absent in any case of the “rigorously” symmetric ac
force ssee Fig. 5d. Furthermore, the increase of the asymme-
try of the driving force, or differently, the decrease of the
asymmetry factorgF snegatived shifts the “marginal” curve B
toward the lesser values of the balance factorgH. As a con-
sequence, the shape of both the “reversal” and “stopping”
characteristics, shown by curves 2 and 3 in Fig. 10, is
slightly modified if the asymmetry of the driving force was
increased. More exactly, the negative slope of both the “re-
versal” and “stopping”v− fa characteristics decreases with
the increasing asymmetry of the of the ac force, until the
derivative dv /dfa becomes positively defined in the whole
interval of the “argument”fa. Two different kinds of the
“reversal” and “stopping” characteristics are shown by
curvess1, 2d and s1a,2ad in Fig. 11. One can see that the
character ofv− fa dependencies taken in both cases of the
low sugFu,0.5; curves 1 and 2d and highsugFu.0.5; curves
1a and 2ad asymmetry of the driving force is rather different.
Regretfully, it was not able to receive the rigorous criteria, to
derive the “critical” values of the parameters responsible for
the “transition” from the monotonev− fa characteristics to
nonmonotonic ones, even in the case of the square-pulse
force. The considered “transition” depends on many factors:
the degree of the disbalance of Maxwellian construction, the
shape and the asymmetry factor of the driving force, etc. In
closing the discussion of the intermediate characteristics we
note that the reversal type of the unforced dc drift of BFs
shows that the bistable system being under the action of the
asymmetrically oscillating zero-mean force could arrive at a
nontrivial behavior, even in the case of thesymmetrical
ssymmetrically shapedd rate function: the “phase transition”
from the less stable state toward more stable one was oc-
curred. It is interesting to note that the reversal type of the
directed motion of BFs takes place too in the previously
discussed case of the opposite asymmetry labeled byRA
− fS ssee Ref.f8gd.

We already noted thatv− fa characteristics satisfying
symmetry relationss6ad and s6bd are contrasymmetrically
shaped ones. This property is demonstrated byv− fa depen-
dencies shown by curvess2,3d and 2C,3Cd in Fig. 11. The
presented dependencies that have been derived by use of the
square-pulse functions9d satisfy the relationsgHs2C,3Cd
=1/gHs2,3d and gFs2C,3Cd=−gFs2C,3Cd, and are rigor-

FIG. 11. The dependence of the drift velocitysarbitrary unitsd
versus the amplitude of the driving force. The parameter values are
r =0.1; ssolid curvesd gH=0.7; sdashed curves 2C and 3Cd gH

<1.4. The other parameter values arescurves 1, 2, 3d gF<−0.41,
−0.23,−0.20, respectively;scurves 1a, 2ad gF<−0.67,−0.78, re-
spectively, scurves 2C and 3Cd gFs2Cd=−gFs2d<0.23 and
gFs3Cd<0.20; scurve Hd gH=0.9, n=2, bF=1/2, Dw=p /2, gF

=1/3.
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ously contrasymmetric ones, in accordance with Eqs.s6ad
and s6bd.

As discussed, the progressive dc motion and the other
types of the spurious drift described by “intermediate”v
− fa characteristics take place in both cases of the high and
low asymmetry of the driving force that was approximated
by the square-pulse function. Nevertheless, the intermediate
characteristics become very flattened if the asymmetry of the
driving force is low. In addition, the steepness ofv− fa char-
acteristics depends on the shape off − t dependence; the
square-pulse ac force is more “effective” if compared to bi-
harmonic one. Finally, the maximal asymmetry factors of
both the biharmonic and the square-pulse functions are rather
different. As a consequence,v− fa dependencies generated
by the biharmonic ac force are much more flattened if com-
pared to those given in the case of the square-pulse function.
This conclusion is illustrated by curveH in Fig. 11. The
presentedv− fa dependence shown by curveH was derived
with the highest asymmetry force described by the relations
n=2, bF=1/2, Dw=p /2, and gF=−1/3. As expected, the
considered dependence is more flattened if compared to
those given by curves 1 and 1a. The lesser values of the
disbalance factorDg0ª ugH−1u are required to achieve the
reversal drift of BF that is driven by the biharmonic force.
For instance, the ratio of the factorsDg0 related to both
curves 1 andH approximately equals 4, i.e., one has that
Dg0s1d /Dg0sHd<4. This implies that the reversal of the BF
being under the action of the biharmonic ac force may be
achieved if the deviation of Maxwellian construction from
the strictly balanced situation is relatively small, or differ-
ently, if the initial velocity of BF was small enough. The
steepness ofv− fa characteristics related to the biharmonic
driver depends on both the slope parameterr and the relative
phaseDw that governs both the shape and the asymmetry of
the driving force. As previously, the considered characteris-
tics are more rapid if the slope parameterr is lesser. The
dependence of the maximal drift velocity, which indicates
the steepness ofv− fa characteristics, versus the relative
phaseDw is shown in Fig. 12. ThevMx−Dw dependences
shown by curves 1 and 1a have been derived with the high-
est asymmetry force satisfying the relationsn=2, and bF

=1/2,whereas the driving force related to the more flattened
curve 2 is described as follows,n=4, bF=1/2 andgF;0.1.
The presented curves show that the maximal drift velocity
vMx is the periodic function ofDw, in agreement withgF
−Dw dependencies discussed in above. Moreover, the pre-
sented curves 1 and 1a that satisfy the relationsgHs1ad
=1/gHs1d and gFs1ad=−gFs1ad are contrasymmetrically
shaped ones, in accordance with the symmetry relationss6ad
and s6bd. The driving forces related to the curves 1 and 1a
are contrasymmetrically shaped, namely, the equalityf1std
=−f1ast−T/2d holds. Furthermore, zero pointsA and B
sshown by arrows in figured of both characteristics 1 and 1a
strictly coincide. This implies the “critical” strengths of the
driving forces that induce the stoppingsreversald of the ac
driven BF strictly coincide if the rate functions and the driv-
ing forces are contrasymmetrically shaped ones, namely, if
one takes thatsad R1su; r ,gHd and f1st ;gF , fad, or sbd
R1asu; r ,1 /gHd and f1ast ;−gF , fad. The discussed zero points
A and B satisfy the relationvMxsDwA,Bd=0, which implies
that the stopping of the BF being under the action of the
maximal deriving force was occurred. ThevMx−Dw depen-
dence shown by curve 2 is flattened; the dc drift induced by
the low asymmetry ac force is less pronounced. The ratio of
the maximal drift velocities taken at the extremes of both
curves 2 and 1 approximately equals 0.4. Finally, curve 2
confirms the previous conclusion: small values of both the
disbalance factorDg0 and the initial velocity of BFs0 are
required to achieve the discussed reversal with the low asym-
metry ac forcessee curve 2; zero points have disappearedd.

In closing the discussion we summarize that the various
types of the unforced dc drift of BFs are generated by the
symmetricalrate functions if the driving force of zero mean
is asymmetrically oscillating one. The characteristic features
of the directed drift generated in the case ofRS− fA symmetry
are quite similar to those earlier obtained in the other case of
the “opposite” symmetry labeled byRA− fS. The progressive
sacceleratedd, regressivesdeceleratedd and reversal types of
the unforced dc drift of BFs take place if the rate function is
“unbalanced,” namely, if Maxwellian construction of the rate
function is not balanced. The parameters that govern the un-
forced drift are as follows: the asymmetry factorgF of the
driving force, and both the slope parameterr and the balance
factor gH of the rate function. The decrease of the slope
parameter enhances the driving effect. The dependencies of
the drift velocity of BF versus the rest parameters, the asym-
metry factorgF the balance factorgH, generally speaking, are
nonmonotone ones. The optimal asymmetry of the driving
force, that induces the maximal driving effect, exists.

VI. CONCLUSIONS

The unidirectional drift of the bistable fronts that separate
two stable uniform states of the bistable system under the
action of the asymmetrically oscillating zero-mean force was
considered within the “pseudolinear” model of the system.
The unforced dc motion generated by thesymmetricalssym-
metrically shapedd rate functionsRSsud and the asymmetri-
cally oscillating zero-mean driverfAstd was examined. We
found that the average characteristics generated in the case of

FIG. 12. The dependence of the maximal drift velocitysarbi-
trary unitsd of BF versus the relative phaseDw. The parameter
values arer =0.2, bF=0.5; scurves 1, 1ad n=2, gHs1ad=1/gHs1d
=0.95,gFs1ad=−gFs1d<0.33; scurve 2d n=4, gF<0.10. The stop-
ping pointsA andB sshown by arrowsd.
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RS− fA symmetry are quite similar to those given in the “op-
posite” case ofRA− fS symmetry, previously discussed in
Ref. f8g. Different types of the unforced dc drift of the asym-
metrically driven BFs were occurred. It was shown that the
progressivesacceleratedd, regressivesdeceleratedd, and re-
versalsregressive-progressived types of the directed drift take
place if the rate function is “unbalanced,” namely, if Max-
wellian construction of the rate function was not balanced.
The “nonprogressive”sregressive, reversal, etc.d types of the
unforced motion of BFs vanish if Maxwellian construction
of the rate function is strictly balanced.

The governing parameters that significantly influence the
directed drift of BFs are as follows:sad the slope coefficients
of the rate function,sbd the balance factorgH, which indi-
cates the disbalance of Maxwellian construction of the rate
function from the strictly balanced situation, andscd the
asymmetry factorgF that indicates the “degree” of asymme-
try of the driving force. The decrease of the slope parameter
r enhances the driving effect; the shift of the drift velocity of
the driven BF is more strongly pronounced at the lesser val-
ues of the parameterr. The dependence of the drift velocity
versus the parametersgH andgF, generally speaking, is non-
monotone. In particular, average velocity of the initially
static smotionlessd BF being under the action of the bihar-
monic ac force, which asymmetrically oscillates in time, in-

creases if the asymmetry factor of the ac force increases.
Differently, in the other case of the ac force, described by the
periodic square-pulse function, the dependence of the drift
velocity of BF versus the asymmetry factorgF is nonmono-
tone. The “optimal” asymmetry of the driving ac force that
induces the maximal driving effect exists.

The particular case of the biharmonic driver consisting of
a superposition of the fundamental mode and its even or odd
superharmonics was considered. The biharmonic ac force
with the odd harmonic mixing is rigorously symmetric, in
any case of the “odd mixing.” As a consequence, the average
characteristics of BFs being under action of the biharmonic
ac force described by a superposition of the odd harmonics
are quite similar to those given in the case of the single-
harmonic force. Differently, the biharmonic ac force de-
scribed by a superposition of the fundamental mode and its
even superharmonics is asymmetrically oscillating one. The
“size” of the driving effect, the shift of the mean velocity of
the asymmetrically driven BF being under action of the bi-
harmonic ac force depends on the asymmetry factorgF,
which is governed by the frequency, the relative phase and
the relative amplitude of the superharmonic mode. The maxi-
mal driving effect of BF is achieved with the biharmonic
force consisting of a superposition of the fundamental mode
and its second superharmonic.
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